Tutorial 3 Model components analysis

Professors Dr. Jaume Sanz Subirana, Dr. J. M. Juan Zornoza and Dr. Adrià Rovira Garcia

Research group of Astronomy & Geomatics (gAGE) Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

Research group of Astronomy & Geomatics Technical University of Catalonia

Authorship statement

This material authorship and Intellectual Property Rights are owned by Jaume Sanz Subirana, José Miguel Juan Zornoza and Adrià Rovira Garcia.

These slides can be obtained either from the server <u>http://www.gage.upc.edu</u>, or <u>jaume.sanz@upc.edu</u>. Any partial reproduction should be previously authorized by the authors, clearly indicating the slides reference.

This authorship statement must be keep untouched at all times.

August 2022

Introduction

- This practical lecture is devoted to analyze and assess different issues associated with Standard and Precise Point Positioning with GPS data.
- The laboratory exercises will be developed with actual GPS measurements, and processed with the ESA/UPC GNSS-Lab Tool suite (gLAB), which is an interactive software package for GNSS data processing and analysis.
- Some examples of gLAB capabilities and usage will be shown before starting the laboratory session.
- All software tools (including *gLAB*) and associated files for the laboratory session are included in the USB stick delivered to lecture attendants.
- The laboratory session will consist in a set of exercises performing a glance assessment of the different model components involved on a Standard or Precise Positioning.

Model Components Analysis

Exercises 1 and 2.

They consist of simple exercises to assess the model components for Standard and Precise Point Positioning.

"Background information" slides are provided, summarizing the main concepts associated with these exercises.

Model Components Analysis

Exercise 1: Model components analysis for SPP

 This exercise is devoted to analyze the different model components of measurements (ionosphere, troposphere, relativity, etc.). This is done both in the Signal-In-Space (SIS) and User Domains.

1. Compute SPP using files: chpi0010.04o, brdc0010.04n

Cachoeira Paulista station (in the south of Brazil: λ =-22.7°, ϕ =-45.0°). January 1st 2004.

NEU Position Error plot from gLAB.out

The different model components will be analyzed with gLAB:

- Using the previous data file, the impact of neglecting each model component will be evaluated in the Range and Position domains
- A baseline example of this analysis procedure for the ionospheric correction is provided as follows.
- The same scheme must be applied for all model terms.

Example of model component analysis: IONO.

The procedure explained here is applicable for all the cases: iono, tropo...

> In Modeling panel, <u>disable</u> the model component to analyze. (in this example: disable lonospheric correction)

 Save as gLAB1.out the associated output file.

Notice that the <u>gLAB.out</u> file contains the processing results with the <u>FULL model</u>, as it was set in the default configuration.

NEU Position Error plot from gLAB1.out

Vertical Position Error plot from gLAB.out, gLAB1.out

Horizontal Position Error plot: gLAB.out, gLAB1.out

Ionospheric model component plot: gLAB.out

9	gLAE	v5.1.0	- 🗆 🗙	
<u>M</u> ode <u>T</u> emplates <u>C</u> onfiguration <u>P</u> references	<u>H</u> elp			
eesa	gLA	B	GAGE gAGE/UPC www.gage.es	30 Model Components
Templates NEU Positioning Error Model Components Zenith Tropospheric Delay Global Graphic Parameters Title Model Components Label Position Top Right Automatic Limits Automatic Ticks	Horizontal Positioning Error Prefit Residuals Ionospheric Combinations X-label Time (s)	Dilution Of Precision Posfit Residuals Carrier Phase Ambiguities Y-label Model (m) WaterMark	Satellite Skyplot Measurement Multipath/Noise Orbit and Clock Comparison Clear Clear Expand figure to margin	delay de
Individual Plot(s) Configuration Plot Nr. 1 Source File gLAB.out Condition(s MODEL X Column SEC 4 	Plot Nr. 2 (\$1=="MODEL") Y Column IONO	Plot Nr. 3	Plot Nr. 4 Dots	Ionosphere delays code and advances carrier measurements
	1 Select I	ονο		Note: Use the gLAB.out file.
Developed by gAGE: Research group of Astronor	my & Geomatics	Current Template: SPP	AB.out	In gLAB1.out file this model component was switched off.

Summary: Iono. model component analysis

lonospheric correction (broadcast Klobuchar)

Ionospheric delays are larger at noon due to the higher insulation.

Large positioning errors (mainly in vertical) appear when neglecting iono. corr.

Ionospheric delay

The ionosphere extends from about 60 km over the Earth surface until more than 2000 km, with a sharp electron density maximum at around 350 km. The ionospheric refraction depends, among other things, of the location, local time and solar cycle (11 years).

- First order (~99.9%) ionospheric delay δ_{ion} depends $\delta_{ion} = \frac{40.5}{f^2}I$ on the inverse of squared frequency: where I is the number of electrons per area unit along ray path (STEC: Slant Total Electron Content). $I = \int N_e ds$
- Two-frequency receivers can remove this error source (up to 99.9%) using ionosphere-free combination of pseudoranges (PC) or carriers (LC).

$$LC = \frac{f_1^2 L 1 - f_2^2 L 2}{f_1^2 - f_2^2}$$

Backup

• Single-frequency users can remove about a 50% of the ionospheric delay using the Klobuchar model, whose parameters are broadcast in the GPS navigation message.

Technical University of Catalonia

15

Example of model component analysis: TROPO.

The *gLAB* configuration can be set-up as follows, to <u>repeat the processing without</u> <u>applying the tropospheric correction (but using the ionosphere again!)</u>:

• The same scheme must be applied for all other model terms (TGDs, relat...)

Tropospheric correction (blind model)

Tropospheric and vertical error are highly correlated. A displacement of vertical component appears when neglecting tropospheric corrections.

Tropospheric delay

- The troposphere is the atmospheric layer placed between Earth's surface and an altitude of about 60 km.
- The effect of troposphere on GNSS signals appears as an extra delay in the measurement of the signal travelling from satellite to receiver.
- The tropospheric delay does not depend on frequency and affects both the pseudorange (code) and carrier phases in the same way. It can be modeled by:
- An hydrostatic component, composed of dry gases (mainly nitrogen and oxygen) in hydrostatic equilibrium. This component can be treated as an ideal gas. Its effects vary with the temperature and atmospheric pressure in a quite predictable manner, and it is the responsible of about 90% of the delay.
- A wet component caused by the water vapor condensed in the form of clouds. It depends on the weather conditions and varies faster than the hydrostatic component and in a quite random way. For high accuracy positioning, this component must be estimated together with the coordinates and other parameters in the navigation filter.

Backup

Relativistic correction on satellite clock due to orbit eccentricity.

This is an additional correction to apply at the receiver level. The satellite clock oscillator is modified on factory to compensate the main effect (~40µs/day).

Relativistic clock correction

1) A constant component, depending only on nominal value of satellite's orbit major semi-axis. It is corrected modifying satellite's clock oscillator frequency:

$$\frac{f_0' - f_0}{f_0} = \frac{1}{2} \left(\frac{v}{c}\right)^2 + \frac{\Delta U}{c^2} = -4.464 \cdot 10^{-10}$$

being $f_0 = 10.23$ MHz, we have $\Delta f = 4.464 \ 10^{-10} f_0 = 4.57 \ 10^{-3}$ Hz. So, satellite should use $f'_0 = 10.22999999543$ MHz.

2) A periodic component due to orbit eccentricity must be corrected by user receiver:

$$rel = -2\frac{\sqrt{\mu a}}{c}e\sin(E) = -2\frac{\mathbf{r}\cdot\mathbf{v}}{c}$$
 (meters)

Being μ =*G M_E* =3.986005 10¹⁴ (*m*³/s²) the gravitational constant, c =299792458 (m/s) light speed in vacuum, *a* is orbit's major semi-axis, *e* is its eccentricity, *E* is satellite's eccentric anomaly, and r and v are satellite's geocentric position and speed in an inertial system.

Backup

20

Technical University of Cataloni

P2-P1 Differential Code Bias (Total Group Delay [TGD]) correction.

These instrumental delays can affect up to few meters, being the satellite TGDs broadcast in the navigation message for single frequency users.

Total Group Delay correction (TGD)

(P2-P1 Differential Code Bias [DCB])

- Instrumental delays are associated to antennas, cables, as well as different filters used in receivers and satellites. They affect both code and carrier measurements.
- Code instrumental delays depend on the frequency and the codes used, and are different for the receiver and the satellites.
- Dual frequency users cancel such delays when using the ionosphere free combination of codes and carrier phases.
- For single frequency users, the satellite instrumental delays (TGDs) are broadcast in the navigation message. The receiver instrumental delay, on the other hand, is assimilated into the receiver clock estimation. That is, being common for all satellites, it is assumed as zero and it is included in the receiver clock offset estimation.

Satellite clock offsets

This is the largest error source, and it may introduce errors up to a thousand kilometers.

Satellite clock offsets

- They are time-offsets between satellite/receiver clocks time and GPS system time (provided by the ground control segment).
- The receiver clock offset is estimated together with receiver coordinates.
- Satellite clock offset values are provided:
 - In real-time, within the broadcast navigation message with a few meters of error

or,

• In post-process mode, by IGS precise products with centimeter-level accuracy.

Backup

Basic: Introductory laboratory exercises

Exercise 2: Model components analysis for PPP

 This exercise is devoted to analyse the additional model components used in Precise Point Positioning (the ones which are not required by SPP). This is done in Range and Position Domains.

 Compute the kinematic PPP solution using files: chpi0010.04o, igs_pre1400.atx, igs12514.sp3

gLAB v5.1.0	- 🗆 🗙	0	gLAB v5.1.0	- 🗆 🗙
Mode Iemplates Configuration Prefere es Help		<u>Mode</u> <u>Templates</u> <u>Configuration</u> <u>Preference</u>	ences <u>H</u> elp	
SPP F1 PPP F2 SBAS F3 GLAB	DAGE gAGE/UPC www.gage.es	cesa	gLAB	AGE gAGE/UPC www.gage.es
Preprocess Modeling	<u>F</u> iter O <u>u</u> tput	Input	P <u>r</u> eprocess M <u>o</u> delling	<u>Filter</u> O <u>u</u> tput
Rover (User) RINEX Observation File: C:\Users\gage\Desktop\gLAB\gs_pre1400.10.040	A Priori Receiver Position From: Calculate Calculate Specify SINEX C .	Measurements Selection Pseudorange Pseudorange + Carrier phas Measurement Configurat C C Pixed StdDev Parameters Coordnates Receiver Clock Troposphere Phase Ambiguite	Smoothing et Kinemat (m) Bevation StdDev (m) Bevation StdDev (m) Bevation StdDev Phi Q Po Bevation StdDev Po 1 Bevation StdDev Po 1 Bevation StdDev Po 1 Bevation StdDev (m) 0 Bevation StdDev Po 1 Bevation StdDev Po 1 Bevation StdDev 1 Bevation StdDev Po 1 Bevation StdDev 1 Bevation StdDev Po 1 Bevation StdDev 1 Bevation StdDev	(n²) (n²) (n²) (n²) (n²) (n²) (n²) (n²)
Developed by gAGE: Research group of Astronomy & Geomatics Current Templat	e: PPP Run gLAB Show Output	Developed by gAGE: Research group of A	stronomy & Geomatics Current Tem;	Run gLAB Show Output

Note: The igs_pre1400.atx file contains the APC used by IGS before GPS week 1400.

g		gLAB v	5.1.0						- 🗆	x
Mode Templates Configuration	Preferences Help									
eesa		aLA	B					gAGE gA	AGE/U	PC
Input	Prentocess	Model	na		Filter			Outr	out	
Andelling Options	1 <u>F</u> eprocess		Dresies Dreduct	o Data Intern	alation			0 <u>0</u> 4	, ac	
Modelling Options			Precise Products	s Data Interp	olation					
Satellite Clock Offset Correction			Interpolation	Option		Ordits		CIOCKS		
Check Broadcast Transmission Tir	me		Interpolation Deg	ree:		10	0	0	Θ	
Consider Satellite Movement Duri	ing Signal Flight Time		Max Consecutive	Gaps Between S	Samples:	8	Θ	2	Ω	
Satellite Mass Centre to Antenna	Phase Centre Officet Correction		Total Gaps Allowe	ed:		16	Θ	4	8	
Satellite Antenna Phase Cent	tre Variation	- 11	Chow Concatenated SP3/CLK ontions							
Receiver Antenna Phase Centre	Correction	- 11			- ch op clons					
Receiver Antenna Reference Poir	nt Correction		Receiver Antenr	na Phase Cen	tre Correc	tion				
Relativistic Clock Correction (orbi	t eccentricity)		O Specify Offset	Read Offset	t from ANTEX	(
Ionospheric Correction			Receiver Antenn	a Phase Centre	Variation					
	Niel Manning	- 11	Stop processing	if Antenna's Rad	lome is not fo	ound in ANT	EX			
		- 11	Receiver Antenr	na Reference	Point Cor	rection				
P1-P2 Correction			🔘 Specify 🔘 Rei	ad from RINEX						
✓ P1 - C1 Correction Flexib	le 🔻									
Wind up Correction (carrier phase	e only)									
Solid Tides Correction										
Relativistic Path Range Correction	n									
			_							
Developed by gAGE: Research gr	oup of Astronomy & Geomatics		Current Templat	e: PPP			Ru	n gLAB	Show O	utput

- Additional model components are used now in the FULL model to assure a <u>centimeter level</u> <u>modeling</u>.
- <u>Precise orbits and clocks</u> instead of broadcast ones.
- <u>Dual frequency Code</u> and <u>Carrier</u> data instead of only single frequency code.
- <u>lono-free combination</u> of codes and carriers to remove ionospheric error and P1-P2 DCBs.

Code and carrier Measurement noise

Note: Figure shows the noise of **code** and **carrier** prefitresiduals, which are the <u>input data for navigation equations</u>.

- Code measurements are unambiguous but noisy (meter level measurement noise).
- Carrier measurements are precise but ambiguous, meaning that they have some millimetres of noise, but also have unknown biases that could reach thousands of km.
- Carrier phase biases are estimated in the navigation filter along with the other parameters (coordinates, clock offsets, etc.). If these biases were fixed, measurements accurate to the level of few millimetres would be available for positioning. However, some time is
 needed to decorrelate such biases from the other parameters in the filter, and the estimated values are not fully unbiased.

Backup

Exercise 2: PPP Model components analysis Orbits & clocks accuracies

Broadcast:

Precise:

Few metres of • accuracy for broadcast orbits and clocks

Few centimetres

broadcast orbits

of accuracy for

and clocks

©gAGE/UPC

http://www.gage.upc.edu

Backup

Example of model component analysis: Solid Tides

Proceed as in the previous exercise:

- 1. In Modeling panel, <u>disable</u> the model component to analyze.
- 2. Save as gLAB1.out the associated output file.

Notice that the gLAB.out file contains the processing results with the <u>FULL model</u>, as it was set in the default configuration.

Make plots as in previous exercises (see slides 38-40).

9 Mode Iemplates Configurat	tion Preferences Help	gLAB v5.1.0					
eesa		gLAB				gAGE 9	AGE/UF
Input	Preprocess	M <u>o</u> deling	Eiter			Ou	tput
Modelling Options			ts Data Interpolation				
Satellite Clock Offset Correct	ion	Interpolati	ion Option	Orbit	5	Clocks	-
Check Broadcast Transmission	n Time	Interpolation	Degree:	10	٥	0	0
Consider Satellite Movement I	During Signal Flight Time	Max Consecu	itive Gaps Between Samples:	8	Θ	2	0
Consider Earth Rotation Durin	ng Signal Flight Time	Total Gaps Al	lowed:	16	٥	4	0
Satellite Mass Centre to Ante	rina Phase Centre Offset Correction	Show Con	nestanated SP3/CLK ontion				
Receiver Antenna Phase Cen	the Correction		neurenneeu 51 57 een option	.,			
Receiver Antenna Reference	Point Correction	Receiver Ant	tenna Phase Centre Corr	ection			
Relativistic Clock Correction ((orbit eccentricity)	 Specify Offs 	et Read Offset from ANT	EK.			
Ionospheric Correction		Receiver An	tenna Phase Centre Variation				
✓ Tropospheric Correction Sir	mple Nominal 🔻 Niell Mapping 💌	Stop process	sing if Antenna's Radome is not	found in A	NTEX		
P1 - P2 Correction		Receiver Ant	tenna Reference Point C	orrectior			
	1) Specify ()	Read from RINEX				
Wind up Correction (carrier pl	hase only)	_ Disa	ble				
Relativistic Path Range Corre	ction						
		Calid	Tiala	_			
		SOLID	lide	S			
				-			
Developed by gAGE: Research	n group of Astronomy & Geomatics	COLLO		٦	Ru	in gLAB	Show Out
		COTIC	CUOI				

Vertical Position Error plot from gLAB.out, gLAB1.out

Horizontal Position Error plot: gLAB.out, gLAB1.out

Solid Tides model component plot: gLAB.out

	gLA	B v5.1.0	- 🗆 🗙	
ode <u>T</u> emplates <u>C</u> onfiguration <u>P</u> refere	ences <u>H</u> elp			
·eesa	gL	AB	gAGE gAGE/OPC www.gage.es	Solid Time Model [Kinematic P
Templates				
NELL Paritioning Error	Harizantal Pacifianina Error	Dilution Of Bracision	Satellite Skuplat	0.05
		Diddon of Fredslott	Затенне экурют	
Model Components	Prefit Residuals	Posfit Residuals	Measurement Multipath/Noise	0.00
Zenith Tropospheric Delay	Ionospheric Combinations	Carrier Phase Ambiguities	Orbit and Clock Comparison	Ê
Clobal Graphic Paramotors				 = −0.05
				Σ
Title Solid Time Model [Kinematic PPP]	X-label Time (s)	Y-label Model (m)	Clear	-0.10
Label Position Top Right Fractional T	ext	WaterMark	Expand figure to margin	
✓ Automatic Limits				-0.15
✓ Automatic Ticks				
Individual Plot(s) Configuration				
Plot Nr. 1	O Plot Nr. 2	O Plot Nr. 3	O Plot Nr. 4	Time (s)
Source File gLAB.out			Ots ▼	
Contron(s) MODEL	▼ (\$1=="MODEL")		🖸 Blue 🔻	
X Column SEC -	4 Oclum SOLIDTIDES	▼ 28 🙁 Legend-label		Solid Tides plot
				Jona nacs plot
		Salact		
		Jelect		
YLAD .	UUL	SOLIDTID	ES	
0				Note: Use the gl AB, o
Developed by gAGE: Research group of As	stronomy & Geomatics	Current Template: PPP	Plot	
				In σl ΔR1 out file thi

GAGE/UPC Research group of Astronomy & Geomatics Technical University of Catalonia

component was switched off.

Solid Tides

It comprises the Earth's crust movement (and thence receiver coordinates variations) due to the gravitational attraction forces produced by external bodies, mainly the Sun and the Moon.

Solid Tides:

These effects do not affect the GNSS signals, but if they were not considered, the station coordinates would oscillate with relation to a mean value.

They produce vertical (mainly) and horizontal displacements.

Receiver Antenna Phase center (APC)

GNSS measurements are referred to the APC. This is not necessarily the geometric center of the antenna, and it depends on the signal frequency and the incoming radio signal direction.

For geodetic positioning a reference tied to the antenna (ARP) or to monument is used.

Receiver APC:

The antenna used for this experiment, has the APC position vertically shifted regarding ARP.

Thence, neglecting this correction, an error on the vertical component occurs, but not in the horizontal one.

Satellite Mass Center to Antenna Phase Center

Broadcast orbits are referred to the antenna phase center, but IGS precise orbits are referred to the satellite mass center.

Satellite MC to APC:

The satellite MC to APC eccentricity vector depends on the satellite. The APC values used in the IGS orbits and clocks products are referred to the iono-free combination (LC, PC). They are given in the IGS ANTEX files (e.g., igs05.atx).

Wind-up affects only carrier phase. It is due to the electromagnetic nature of circularly polarized waves of GNSS signals.

As the satellite moves along its orbital path, it performs a rotation to keep its solar panels pointing to the Sun direction. This rotation causes a carrier variation, and thence, a range measurement variation.

Wind-Up

Wind-up changes smoothly along continuous carrier phase arcs. In the position domain, wind-up affects both vertical and horizontal components.

Thanks for your attention

available

are

Tutorials

e

http://www.gage.upc.edu

Acknowledgements

- The ESA/UPC GNSS-Lab Tool suit (gLAB) has been developed under the ESA Education Office contract N. P1081434.
- The data set of GRACE-A LEO satellite was obtained from the NASA Physical Oceanography Distributed Active Archive Center at the Jet Propulsion Laboratory, California Institute of Technology.
- The other data files used in this study were acquired as part of NASA's Earth Science Data Systems and archived and distributed by the Crustal Dynamics Data Information System (CDDIS).
- To Pere Ramos-Bosch for his fully and generous disposition to perform gLAB updates in his afterhours.
- To Adrià Rovira-Garcia for his contribution to the edition of this material and gLAB updating.
- To Deimos Ibáñez for his contribution to gLAB updating and making the Windows, Mac and LINUX installable versions for this tutorial.

