

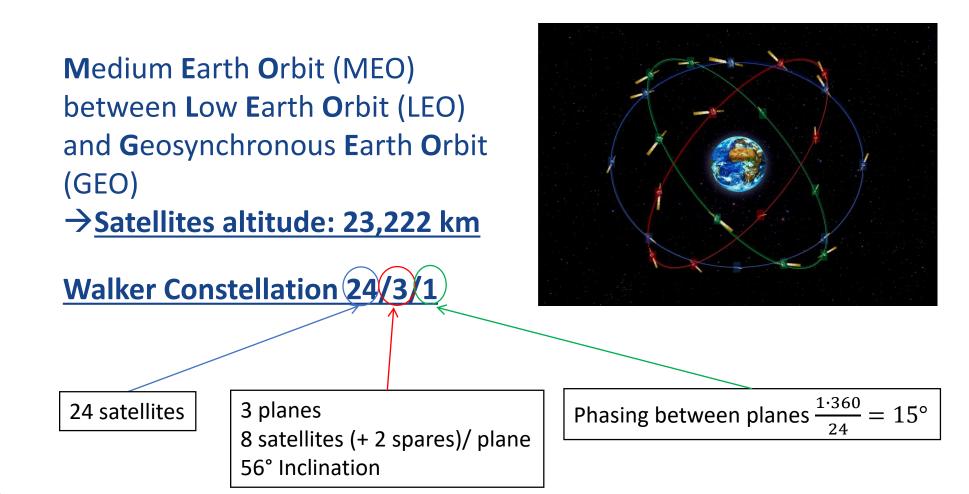
Galileo High Accuracy Service

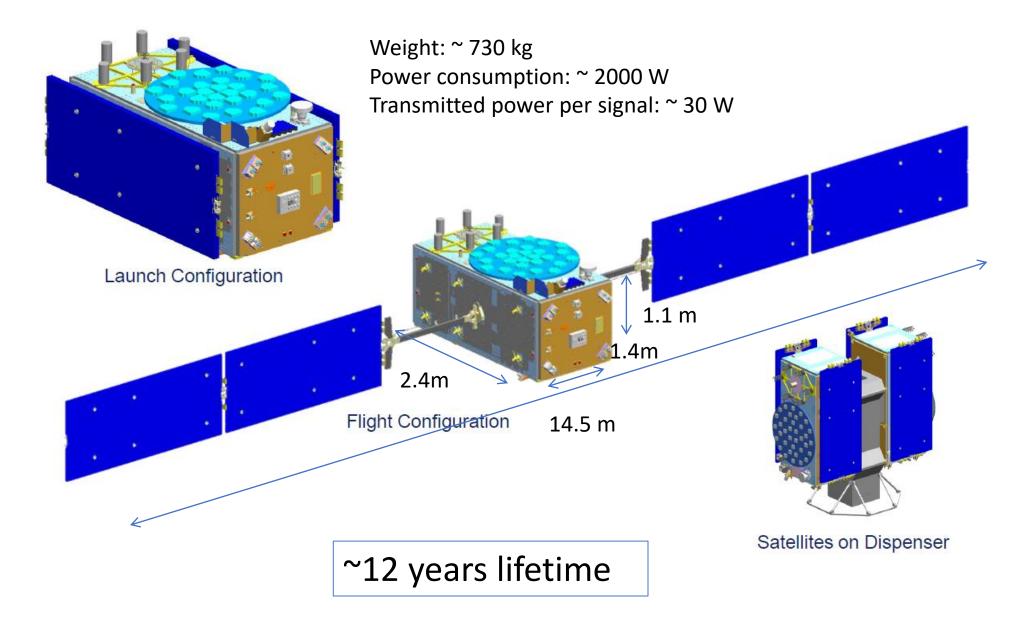
Ignacio Fernández Hernández European Commission 6 Sept 2022

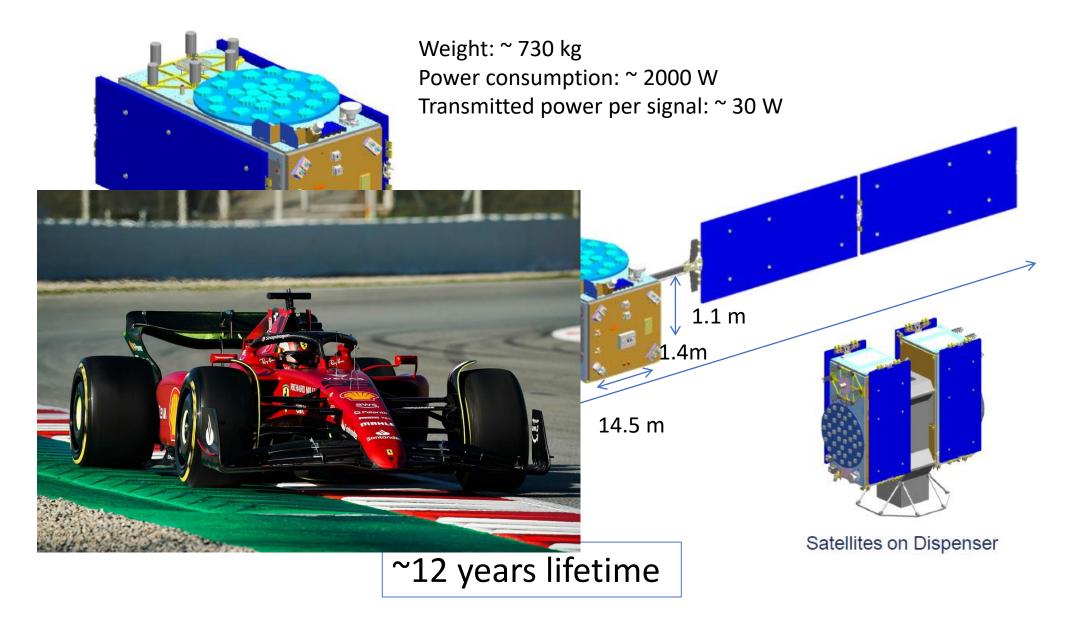
Table of Contents

- Galileo
- GNSS Accuracy
- High Accuracy
 - RTK
 - PPP
- Galileo HAS (High Accuracy Service)

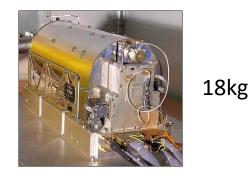
2

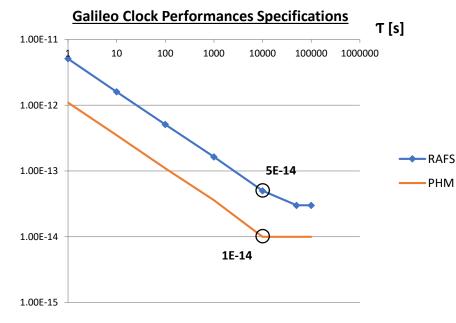

Table of Contents


- Galileo
- GNSS Accuracy
- High Accuracy
 - RTK
 - PPP
- Galileo HAS (High Accuracy Service)


3

Galileo Constellation



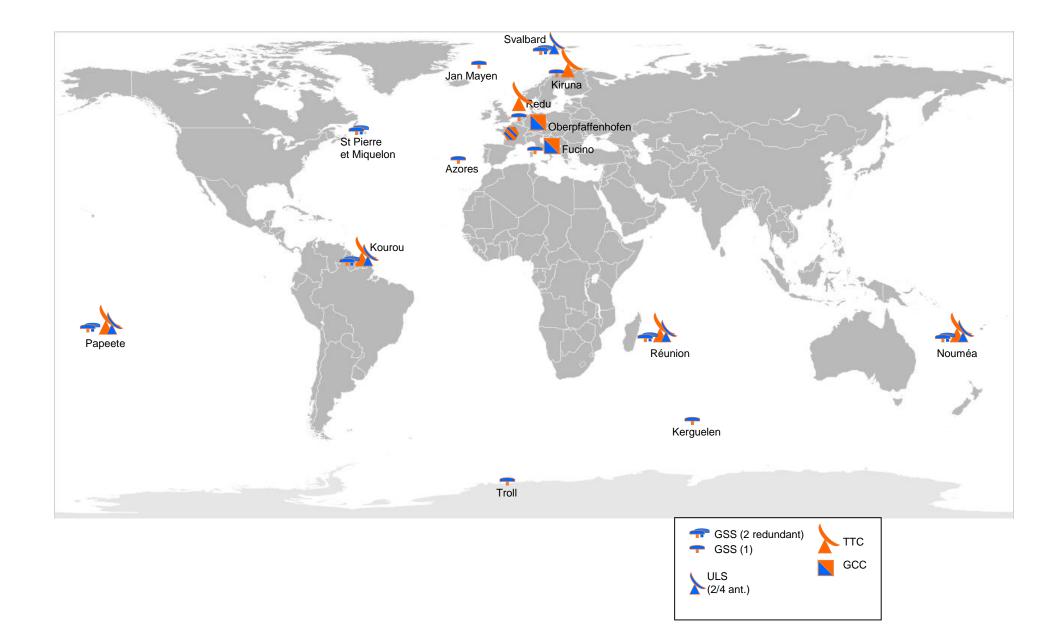


Galileo Satellite Clocks

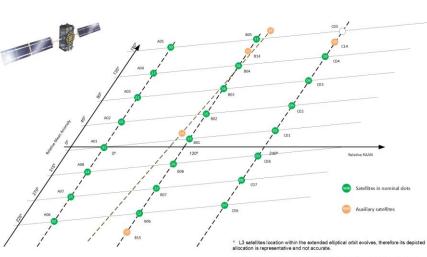
Galileo is using two types of Ultra-Stable Atomic Clocks:

Passive Hydrogen Maser

Rubidium Atomic Frequency Standard


5.5kg

5ns = 1.5m Ranging Error (!)


Allan Deviation = Measure of clock stability

Galileo Ground Segment

Galileo Up-to-Date Information

- <u>https://www.gsc-europa.eu/system-service-</u> status/constellation-information
- Currently:
 - 23 usable sats.
 - 5 not usable/not available
- Website includes
 - Orbital parameters
 - NAGUs/Service Notices

² The plot represents the relative Mean Anomaly and RAAN with respect to slot A1. It does not correspond to a specific date.

• <u>https://www.gsc-europa.eu/support-to-</u> <u>developers/galileo-satellite-metadata</u>

Satellite Name ¹	SV ID ²	Clock ^a	Status ⁴	Active NAGU ⁵	NAGU Type ⁶	NAGU Subject ⁷	
GSAT0101	E11	RAFS	USABLE				
GSAT0102	E12	RAFS	USABLE				
GSAT0103	E19	RAFS	USABLE				
GSAT0104	E20	RAFS	NOT AVAILABLE	2014014	UNP_UNUFN	UNAVAILABLE FROM 2014-05-27 UNTIL FURTHER NOTICE	
GSAT0201	E1S	РНМ	NOT USABLE	2021008	GENERAL	GSAT0201 AND GSAT0202 UNAVAILABLE	
GSAT0202	E14	РНМ	NOT USABLE	2021008	GENERAL	GSAT0201 AND GSAT0202 UNAVAILABLE	
GSAT0203	E26	РНМ	USABLE				
GSAT0204	E22	RAFS	NOT USABLE	2017045	GENERAL	GSAT0204 REMOVED FROM ACTIVE SERVICE ON 2017-12-08 UNTIL FURTHER NOTICE FOR CONSTELLATION MANAGEMENT PURPOSES	
GSAT0205	E24	PHM	USABLE				
GSAT0206	E30	РНМ	USABLE				
GSAT0207	E07	PHM	USABLE				
GSAT0208	EOS	PHM	USABLE				
GSAT0209	E09	РНМ	USABLE				
GSAT0210	E01	РНМ	NOT USABLE	2022035	UNP_UNUFN	UNAVAILABLE FROM 2022-08-31 UNTIL FURTHER NOTICE	
GSAT0211	E02	PHM	USABLE				
GSAT0212	E03	PHM	USABLE				
GSAT0213	E04	PHM	USABLE				
GSAT0214	E05	PHM	USABLE				
GSAT0215	E21	PHM	USABLE				
GSAT0216	E25	PHM	USABLE				
GSAT0217	E27	PHM	USABLE				
GSAT0218	E31	PHM	USABLE				
GSAT0219	E36	PHM	USABLE				
GSAT0220	E13	РНМ	USABLE				
GSAT0221	E15	РНМ	USABLE				
GSAT0222	E33	PHM	USABLE				
GSAT0223	E34	РНМ	USABLE	2022033	USABLE	USABLE AS FROM 2022-08-29	
GSAT0224	E10	PHM	USABLE	2022034	USABINIT	USABLE AS FROM 2022-08-29	

1: Satellite Name: Galileo Satellite (GSAT) identifier of the satellites:

SAT01XX: IOV satellites

Constellation Status

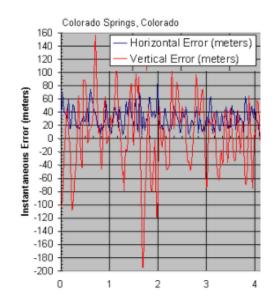
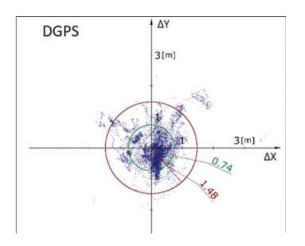
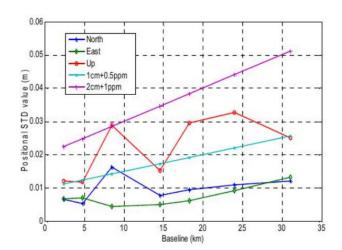
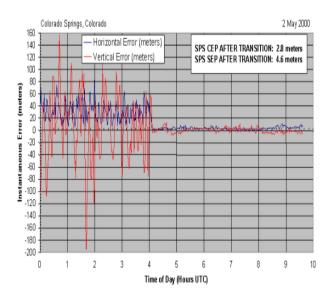

> GSAT02XX: FOC satellites

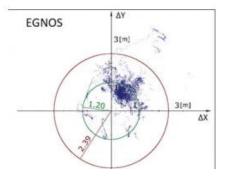
Table of Contents

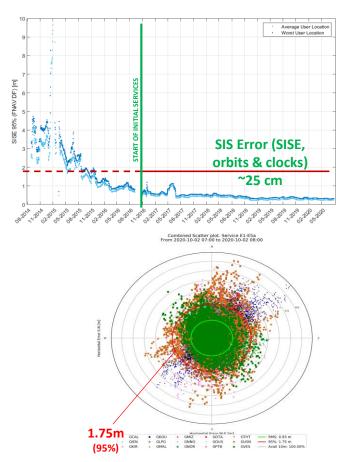

- Galileo
- GNSS Accuracy
- High Accuracy
 - RTK
 - PPP
- Galileo HAS (High Accuracy Service)

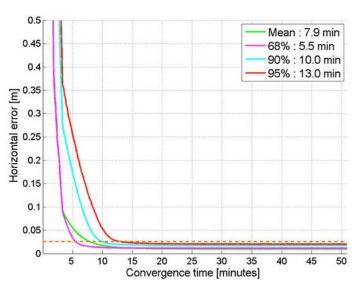
12

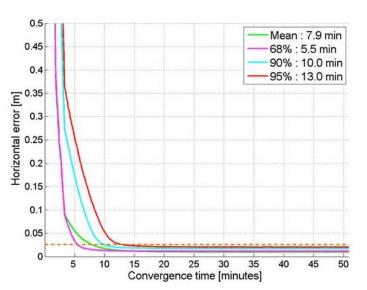

	Standalone	Aug	mented
	Absolute positioning (global)	Absolute positioning	Differential positioning
Spreading code positioning (error >~ 1m)	 1990s: GPS with Selective Availability (~100m) 		
Carrier phase positioning (~1-20 cm)			

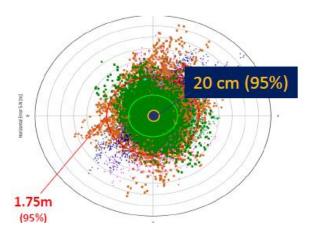

	Standalone	Aug	nented
	Absolute positioning (global)	Absolute positioning	Differential positioning
Spreading code positioning (error >~ 1m)	 1990s: GPS with Selective Availability (~100m) 		 1990s: DGPS (>~1m). Need base station some 100-km away and ground link.
Carrier phase positioning (~1-20 cm)			


	Standalone	Augr	nented
	Absolute positioning (global)	Absolute positioning	Differential positioning
Spreading code positioning (error >~ 1m)	 1990s: GPS with Selective Availability (~100m) 		 1990s: DGPS (>~1m). Need base station some 100-km away and ground link.
Carrier phase positioning (~1-20 cm)			 1980s-90s: Static, then kinematic survey, post- processing, then kinematic survey in real-time (RTK). (~1cm). Need base station some km away and ground link.


	Standalone	Aug	mented
	Absolute positioning (global)	Absolute positioning	Differential positioning
Spreading code positioning (error >~ 1m)	 1990s: GPS with Selective Availability (~100m) 2000s: GPS without Selective Availability (~3-10m) 		 1990s: DGPS (>~1m). Need base station some 100-km away and ground link.
Carrier phase positioning (~1-20 cm)			 1980s-90s: Static, then kinematic survey, post- processing, then kinematic survey in real-time (RTK). (~1cm). Need base station some km away and ground link.


	Standalone	Aug	mented
	Absolute positioning (global)	Absolute positioning	Differential positioning
Spreading code positioning (error >~ 1m)	 1990s: GPS with Selective Availability (~100m) 2000s: GPS without Selective Availability (~3-10m) 	 2000s: SBAS (>~4m). Need regional monitoring coverage and GEO link. Provides integrity for aviation. 	 1990s: DGPS (>~1m). Need base station some 100-km away and ground link.
Carrier phase positioning (~1-20 cm)			 1980s-90s: Static, then kinematic survey, post- processing, then kinematic survey in real-time (RTK). (~1cm). Need base station some km away and ground link.


	Standalone	Augr	nented
	Absolute positioning (global)	Absolute positioning	Differential positioning
Spreading code positioning (error >~ 1m)	 1990s: GPS with Selective Availability (~100m) 2000s: GPS without Selective Availability (~3-10m) 2010s: New GNSS (>~1m): more satellites (JDOP); accurate orbit/clocks, 21 (JSISE); new signals, eg AltBOC (JUEE) 	 2000s: SBAS (>~1m). Need regional monitoring coverage and GEO link. Provides Integrity for aviation. 	 1990s: DGPS (>~1m). Need base station some 100-km away and ground link.
Carrier phase positioning (~1-20 cm)			 1980s-90s: Static, then kinematic survey, post- processing, then kinematic survey in real-time (RTK). (~1cm). Need base station some km away and ground link.


	Standalone	Augr	nented
	Absolute positioning (global)	Absolute positioning	Differential positioning
Spreading code positioning (error >~ 1m)	 1990s: GPS with Selective Availability (~100m) 2000s: GPS without Selective Availability (~3-10m) 2010s: New GNSS (>~1m): more satellites (↓DOP); accurate orbit/clocks, 2f (↓SISE); new signals, eg AltBOC (↓UEE) 	 2000s: SBAS (>~1m). Need regional monitoring coverage and GEO link. Provides Integrity for aviation. 	 1990s: DGPS (>~1m). Need base station some 100-km away and ground link.
Carrier phase positioning (~1-20 cm)		 2010s: PPP (~1-20cm), post-processing, then real time. Long (some mins in principle) convergence time. Needs satellite/ground link. 	 1980s-90s: Static, then kinematic survey, post- processing, then kinematic survey in real-time (RTK). (~1cm). Need base station some km away and ground link.

	Standalone	Aug	nented
	Absolute positioning (global)	Absolute positioning	Differential positioning
Spreading code positioning (error >~ 1m)	 1990s: GPS with Selective Availability (~100m) 2000s: GPS without Selective Availability (~3-10m) 2010s: New GNSS (>~1m): more satellites (↓DOP); accurate orbit/clocks, 2f (↓SISE); new signals, eg AltBOC (↓UEE) 	 2000s: SBAS (>~1m). Need regional monitoring coverage and GEO link. Provides Integrity for aviation. 	 1990s: DGPS (>~1m). Need base station some 100-km away and ground link.
Carrier phase positioning (~1-20 cm)		 2010s: PPP (~1-20cm), post-processing, then real time. Long (some mins in principle) convergence time. Needs satellite/ground link. 2010s: PPP-RT error contrit (mainly iono with RTK netw short convertion 	utions ⁽ tropo) vorks ->

	Standalone	Aug	mented
	Absolute positioning (global)	Absolute positioning	Differential positioning
Spreading code positioning (error >~ 1m)	 1990s: GPS with Selective Availability (~100m) 2000s: GPS without Selective Availability (~3-10m) 2010s: New GNSS (>~1m): more satellites (↓DOP); accurate orbit/clocks, 2f (↓SISE); new signals, eg AltBOC (↓UEE) 	 2000s: SBAS (>~1m). Need regional monitoring coverage and GEO link. Provides Integrity for aviation. 	 1990s: DGPS (>~1m). Need base station some 100-km away and ground link.
Carrier phase positioning (~1-20 cm)	 2020s: PPP from GNSS (?-20cm): Precise orbits/clocks/biases (/ionosphere?) from GNSS. Lower convergence time with multi-frequency, multi-GNSS, ionosphere correction. 	 2010s: PPP (~1-20cm), post-processing, then real time. Long (some mins in principle) convergence time. Needs satellite/ground link. 2010s: PPP-RT error contrib (mainly iono with RTK netw short convertion 	utions /tropo) vorks ->

Table of contents

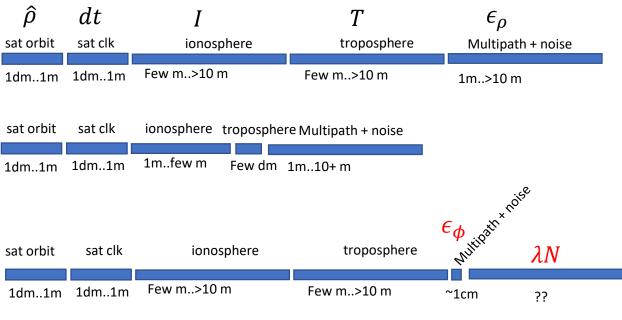
- Galileo
- GNSS Accuracy
- High Accuracy
 - RTK
 - PPP
- Galileo HAS (High Accuracy Service)

22

Carrier Phase Measurements

• Pseudorange measurement equation:

 $\rho = r + I + T + c(b - dt) + \epsilon_{\rho}$

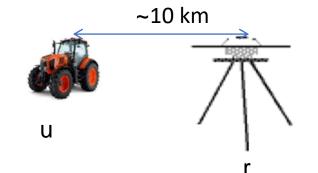

• Corrected pseudorange:

 $\rho_{corr} = r + I_{corr} + T_{corr} + c(b - dt) + \epsilon_{\rho}$

Carrier phase measurement equation: sat or

 $\phi = r - I + T + c(b - dt) + \frac{\lambda N}{\epsilon_{\phi}} + \frac{\epsilon_{\phi}}{\epsilon_{\phi}}$

- Our objective is to reduce all errors as much a possible (cm level) so we can solve the carrier phase ambiguity
- Options:
 - Get more accurate corrections (PPP)
 - o Cancel what we can through measurement linear combinations (RTK,PPP)

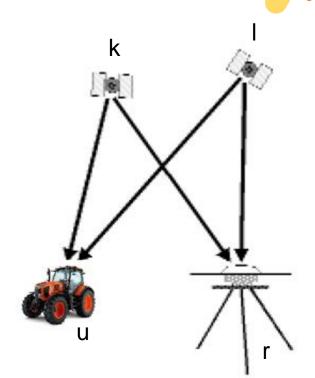


Real Time Kinematics

- Assume you have a reference station nearby (10km)
- You have synch'ed measurements from both your user receiver/rover (u) and the reference station (r)
- Single difference:

 $\phi_u = r_u - I_u + T_u + c(b_u - dt) + \lambda N_u + \epsilon_{\phi}$ $\phi_r = r_r - I_r + T_r + c(b_r - dt) + \lambda N_r + \epsilon_{\phi}$ $\phi_u - \phi_r = \phi_{ur} = r_{ur} + cb_{ur} + \lambda N_{ur} + \sqrt{2}\epsilon_{\phi}$

• Iono, tropo, sat clk out. If N_r and N_u integer, N_{ur} integer. But noise error x $\sqrt{2}$

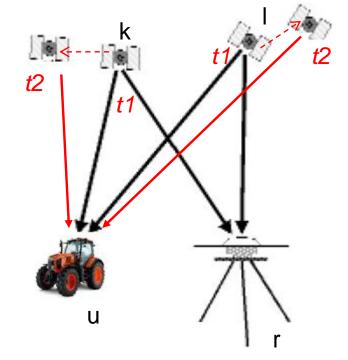


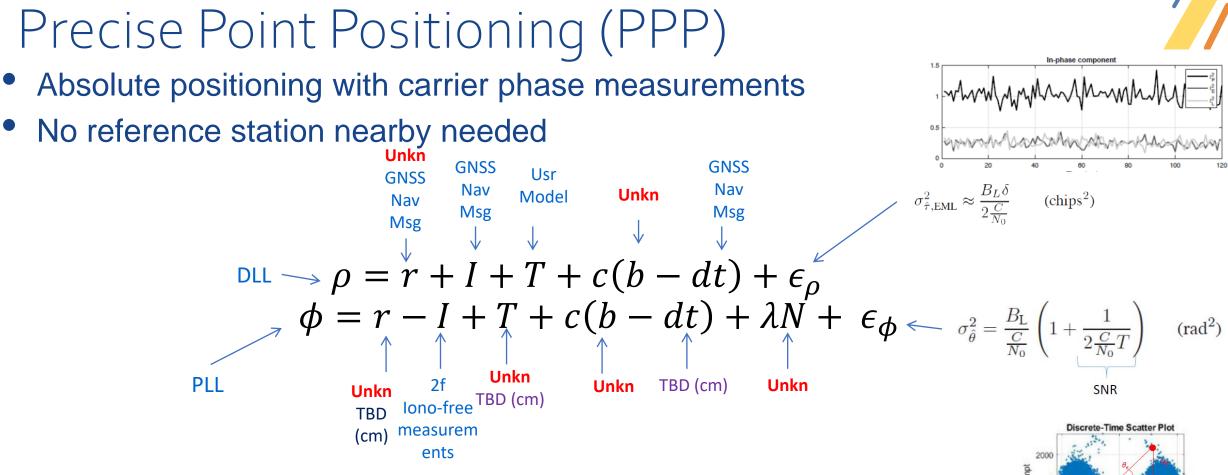
Real Time Kinematics

- Next objective: get rid of receiver biases with another linear combination.
- **Double difference**: subtract the single difference for one satellite (I) from that from another satellite (k)

 $\phi_{ur}^{kl} = \phi_{ur}^k - \phi_{ur}^l = r_{ur}^{kl} + N_{ur}^{kl} + 2\epsilon_{\phi}$

- Now, satellite clock bias is cancelled. Noise error multiplied again by $\sqrt{2}$. No problem, still cm-level
- Remaining unknown: N_{ur}^{kl}




Real Time Kinematics

- How to remove N_{ur}^{kl} ?
 - Observables at (sufficiently) different times -> geometric diversity. Triple difference
 - Requires continuous phase tracking (no cycle slips), so $N_{ur,t1}^{kl} = N_{ur,t2}^{kl}$

$$\phi_{ur,t2}^{kl} - \phi_{ur,t1}^{kl} = \phi_{ur,2,1}^{kl} = r_{ur,2,1}^{kl} + 2\sqrt{2}\epsilon_{\phi}$$

- -> all errors gone (except cm-level noise)
- Main disadvantage: waiting time
- Not exploited/discussed:
 - Linear combinations between frequencies of the same satellite (iono-free, widelane, narrow lane, geometry free)
 - https://gssc.esa.int/navipedia/index.php/Combination_of_GNSS_Measurements
 - Linear combinations of range and carrier phase (Melbourne-Wubbena)
 - <u>https://gssc.esa.int/navipedia/index.php/Detector_based_in_code_and_carrier_phase_data:_The_Melbourne-W%C3%BCbbena_combination</u>
 - Resolve ambiguities as a set. E.g.: LAMBDA method
- Today's RTK applications provide almost instantaneous convergence to cm-level position
- Another ref: <u>http://gpspp.sakura.ne.jp/rtklib/rtklib.htm</u>

-2000

-5000

I prompt

- Problems: remove/estimate I, T, dT, dt, N with a cm-level error
- Solution: iono-free (I), trilaning (N), tropospheric model or additional unknown (Tz), high accuracy satellite orbits (ρ) and clocks (dt), and biases for multiple frequencies

Precise Point Positioning (PPP)

• Iono-free measurements: remove 1st order iono error (99.9%)

$$I = \frac{40.3 \, TEC}{f^2} \qquad \phi_{IF} = \frac{f_1^2 \phi_1 - f_2^2 \phi_2}{f_1^2 - f_2^2} \qquad p_{IF} = \frac{f_1^2 p_1 - f_2^2 p_2}{f_1^2 - f_2^2}$$

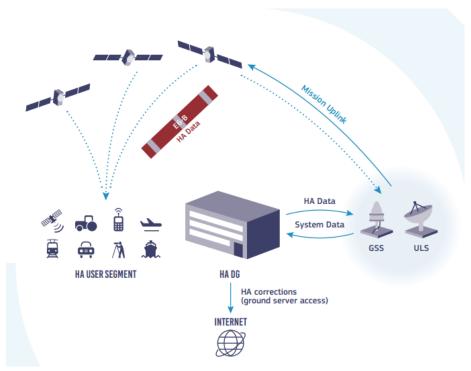
- Problem of iono-free:
 - multiplies code error by >2 depending on the frequency combination
 - o Makes N non-integer
 - o Therefore, accurate ionospheric corrections still useful
- Tropospheric Zenith Delay (TZD): based on mapping function and real time corrections, or estimated in the receiver (just 1 extra unknown, very stable)
- cm-level orbits and clocks require:
 - Precise models for satellite solar radiation pressure, antenna phase centre, centre of mass, phase wind-up, Earth rotation, tides...
 - A real-time monitoring and communication system. Several hundred bps needed

Precise Point Positioning (PPP)

• Typical PPP solution state vector (iono-free)

$$X = (x, y, z, v_x, v_y, v_z, b_{IF}, T_z, N^1, ..., N^K)$$

- Typical PPP solution: Kalman Filter
 - Prediction phase: estimate state vector based on previous state
 - Correction phase: adjust based on new measurements
- Still, very accurate satellite (orbits, clocks, inter-freq. Biases) information required -> objective of PPP services, like Galileo HAS

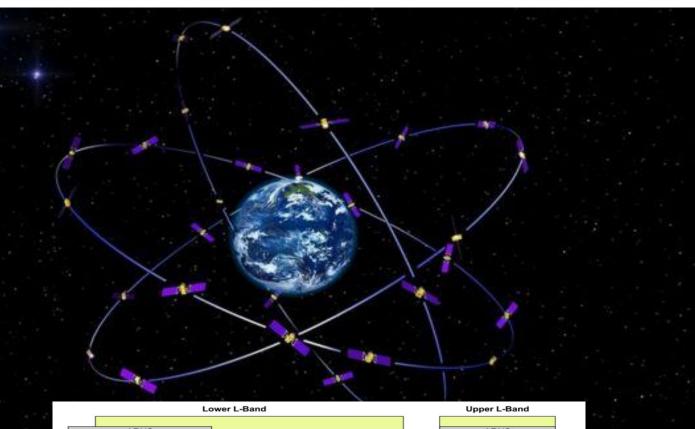

Table of Contents

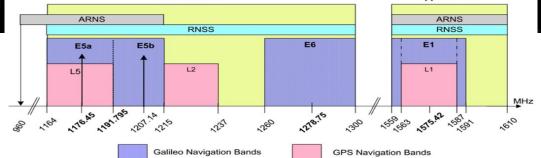
- Galileo
- GNSS Accuracy
- High Accuracy:
 - RTK
 - PPP
- Galileo HAS (High Accuracy Service)

30

Overview of Galileo High Accuracy Service (HAS)

- Galileo High Accuracy Service provides orbit, clock, code and phase biases for Galileo and GPS (I/NAV & CNAV iono-free and Galileo E1, E5a, E5b, E6B/C and GPS L1C/A, L2C, L2P signals)
- Ionospheric corrections in Europe to be provided in the future (2024+)
- Ground dissemination channel through a real-time connection in RTCM-like format
- High update rate and dissemination delay of few seconds
- Users informed if a satellite shall not be used for PPP solution

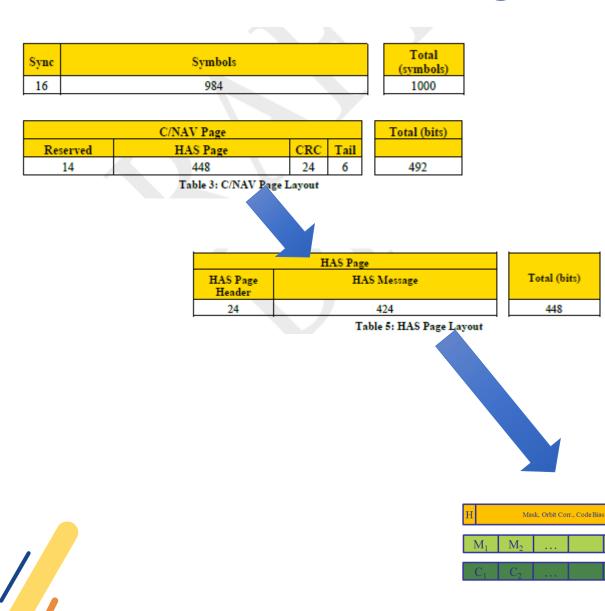



European Union Agency for the Space Program (EUSPA), "Information Note on Galileo High Accuracy Service," 2020. [Online]. Available: https://www.gsceuropa.eu/sites/default/files/sites/all/files/Galileo_HAS_Info_Note.pdf. European Union, "E6-B/C Signal-In-Space Technical Note," 2019. [Online]. <u>https://www.gsc-europa.eu/sites/default/files/sites/all/files/E6BC_SIS_Technical_Note.pdf</u>. <u>HAS Signal In Space ICD</u> I. Martini, IONGNSS+ 2022

Galileo HAS Signal

	Galileo	QZSS	SBAS	Commerci al
Coverage	Global	Regional	Regional	Global (except high latitudes)
Satellites orbits	MEO	IGSO	GEO	GEO
Bandwidth per sat.	448 bps	2000 bps	250 bps	from ~2500 bps
Nb sat typically visible (open-sky)	4-6	1-3	1-2	1-2
Band/Frequency	E6, 1278.75 MHz	L6, 1278.75 MHz	E5b, 1207.14 MHz	L-band (~1-2 GHz)

	Signal and Data features	
Frequency	1278.75 MHz	
Signal	E6B	
Min. Power	-158 dBW	
Modulation	BPSK(5)	
Chip Rate	5.115 Mcps	
Code Length	1 ms	
Symbol Rate	1000 sps	
Data Rate	492 bps	
HA Data Rate	448 bps	
Dete Celler	FEC, as per Galileo OS SIS ICD and	
Data Coding	interleaving 123 x 8	
Spreading Code	No	
Encryption	INO	
Data Format	TBD but based on open standard.	
	Orbit and clock corrections, code and phase	
Data (TBC)	biases, SQM, flags, ionospheric information.	


Galileo HAS infrastructure

Galileo HAS Phase 1 architecture. The 14 GSS (Galileo Sensor Stations) are depicted with a single antenna, and the five ULS (Up-Link stations) are depicted with four antennas

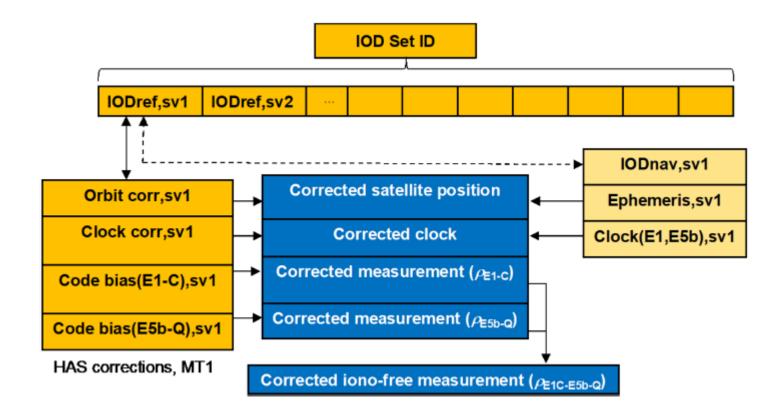
Fernandez-Hernandez, I., Chamorro-Moreno, A., Cancela-Diaz, S., Calle-Calle, J. D., Zoccarato, P., Blonski, D., ... & Mozo, A. (2022). Galileo high accuracy service: initial definition and performance. *GPS Solutions*, *26*(3), 1-18

HAS SIS ICD message structure

Galileo HAS fields (Phase

HAS Msg.

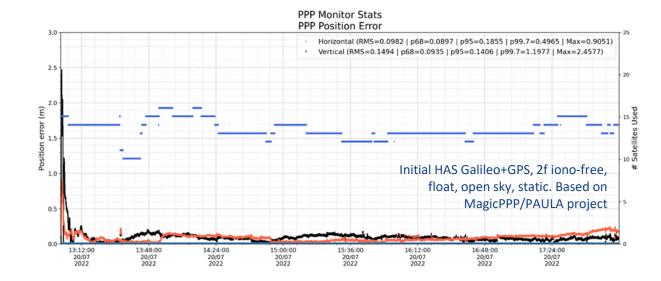
M

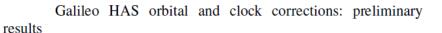

HAS Msg. to encode ($k \leq 32$ blocks)

Encoded HAS Msg. (n<255 blocks)

Correction	Range	Scale factor	Unit	Size (bits)
Orbit: delta radial	± 10.2375	0.0025	m	13
Orbit: delta in- track	±16.376	0.0080	m	12
Orbit: delta cross- track	±16.376	0.0080	m	12
Delta clock	- 10.2375 to+10.2350	0.0025	m	13
Code bias	± 20.46	0.02	m	11
Phase bias	± 10.23	0.01	cycles	11

HAS SIS ICD message structure

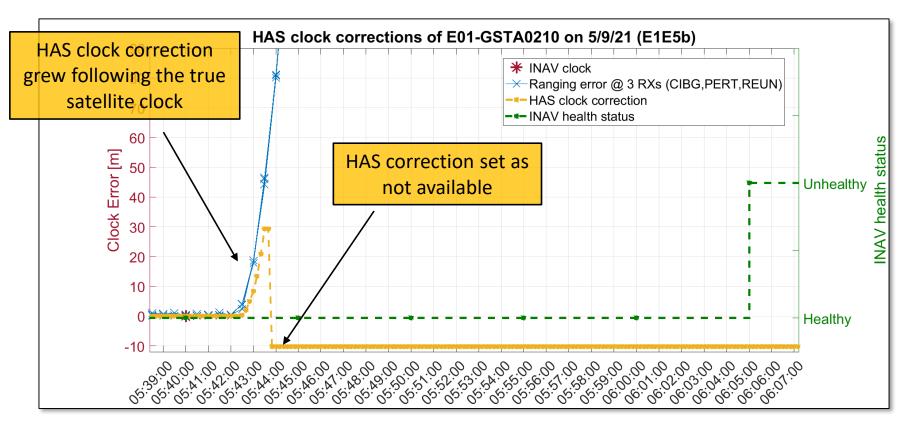

Galileo HAS fields (Phase 1)							
Correction	Range	Scale factor	Unit	Size (bits)			
Orbit: delta radial	± 10.2375	0.0025	m	13			
Orbit: delta in- track	±16.376	0.0080	m	12			
Orbit: delta cross- track	±16.376	0.0080	m	12			
Delta clock	- 10.2375 to+10.2350	0.0025	m	13			
Code bias	± 20.46	0.02	m	11			
Phase bias	± 10.23	0.01	cycles	11			

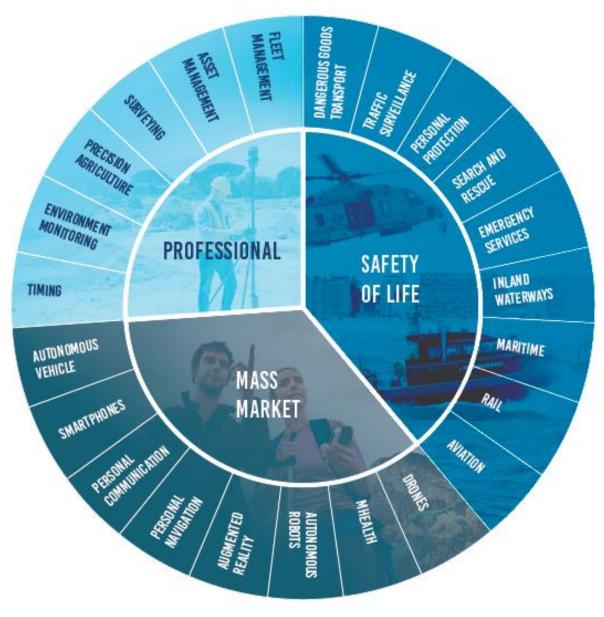

TIAC C 11 (DI

HAS Status and Plans

NEW RELIES WORK ACCURACY SERVICE, CONTACT DOCUMENT (HISSISTIC)

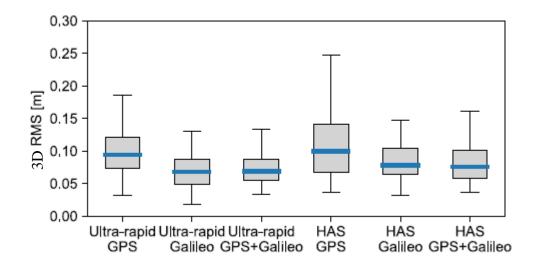
- HAS SIS ICD available since May 22
- Since July 22, HAS signal also available worldwide with orbit and clock corrections and biases for Galileo (E1, E5a/b, E6) and GPS (L1C/A, L2C)
- Still in validation phase, but very high performance already!
- Initial Service declaration foreseen for end'22, including an internet-based correction distribution service




Constella- tion		Along (T), RMS [cm]	Across (W), RMS [cm]	1D RMS [cm]	Clock- StdDev (1-Sigma) [ns]
Galileo	3.2	6.9	5.1	5.3	0.15
GPS	3.2	9.9	4.9	6.6	0.26

HAS and fault detection

- If the HAS correction value grows and shows a degradation of the orbit and/or clock error, the user excludes the satellite to avoid impact on the position performance
- In addition, the HAS message informs the user that the satellite shall not be used


Galileo HAS Applications

Galileo HAS Applications

- Recent example: using HAS for Sentinel 6A positioning (LEO, 1340km altitude)
- Main advantage: real time, no ground assistance

Hauschild, A., Montenbruck, O., Steigenberger, P., Martini, I., & Fernandez-Hernandez, I. (2022). Orbit determination of sentinel-6A using the galileo high accuracy service test signal. GPS Solutions, 26(4), 1-13

Thank you for your attention! Galileo High Accuracy Service

Ignacio Fernández Hernández European Commission 6 Sept 2022

Acknowledgements: Galileo HAS team

