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Overview

Initialization of synchronization parameters

Estimates

Acquisition Nav. Processing

Loss of lock, restart, etc.
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Signal Acquisition

| 4

>

Provides a rough estimate of the signal Doppler shift » and
time-delay 7

Solves a maximum likelihood estimation problem in a
coarse resolution

Detects received satellites (separated by codes,
DS-CDMA)

For each satellite correlator outputs with the same
time-delay and Doppler shift from different epochs/periods
are used to form a decision variable

If the decision variable passes a threshold, the signal (from
a certain satellite) is assumed to be present/received
Time-delay and Doppler shift estimates are used to
initialize tracking loops
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Discrete Signal Model (1)

Extending the discrete signal model by introducing a Doppler
shift » and a carrier phase ¢ we can write the complex
baseband signal of one satellite as

x[k] = VPei?glk] (¢(7) © d[k,v]) + n[k] e CN*1

where
x[k] = [x(KNTs),....x((kN+n)Ts),...,x((kN+ N —1) T)]"
nk] = [n(kNTs),....,n((kN+n)Ts),...,n((kN+N—1)Te)]"
c(r) = [e(r)--oy...,c(nTs—=7),...,c(N=1)Ts—7)]"

d[k, I/] — ej27r1/kNTs’ o ’ej27r1/ (kKN+n) Ts7 o 7ej27rl/(kN+Nf1) Ts:| T

as well as ® denoting the Hadamard-Schur product
(element-wise multiplication), n=0,1,...,N—1,
k=0,1,...,K—1, N> Ny, and N/Ny € N.




Discrete Signal Model (2)

We assume that the signal is filtered with an ideal lowpass filter
h;(t) and subsequently sampled with a sampling frequency
fs = 4- = 2B. Thus, the noise n[k] is complex white Gaussian

noise with
E[nfk]] = 0
E[|n[kI8] = No?
E [n[kn"[K]] = o2y

We assume that quantization noise and thermal noise from the
antenna and the LNA are included in n[k]. Thus,

02 = 2BNy + 20(27.




Maximum Likelihood Estimation (1)
For
x = x[O]

let us assume a random variable x has a multivariate Gaussian
probability density function (pdf) parameterized by the
parameters 8 = [r, v, ¢, P, g[0]]T, and thus we get

— V/Pei? r 2
Pri6) = (m:z)N exp | —IX = VPGl (e(r) © D0, 1)

n On

The likelihood function with respect to the parameter vector 0 is

given as
L(x; ) = px(x; 0)

» L(x;0) is a function of the parameter vector 6, which is to
be estimated at a given realization of the random variable x
» The pdf px(x; 8) is a function of the realization of the
F3 random variable x for a fixed value of 6




Maximum Likelihood Estimation (2)
Let us reparameterize the problem with

o = VPei?g[0]

and
0 =[r,v,0] .

Now the maximum likelihood estimator (MLE) can be given as

A

0 = arg maax{L(x; 0)} =arg méxx{log(L(x; 0))}.

The MLE is asymptotically (large N) unbiased and efficient.
When further deriving the estimator we get

0 = arg meax {Iog(1) — Nlog(mo2) — (:r%HX — a(c(r) © d[o, 1/])||§}
= arg méax {—x"x + a*(e(r) ® d[0,1])"'x + ax"(c() ® d[0, ])

—a*a(e(r) ©d[0,v])*(c(r) @ d[0,v])} .




Maximum Likelihood Estimation (3)

Now, we can define the cost function

J(8) = a*(c(r) @ d[0, v])x + ax(c(7) @ d[0, v])
— o*a(e(r) @ d[0, ) (c(r) @ d[0, v]).

Taking the derivative of J(8) with respect to o* and equating to

zero we get
ago(g) = (¢(7) @ d[0, v])!x
—a(e(r) @d[0,v))(c(r) ®d[0,]) =0
and
4 (c(7) ®d[0, v])Hx _ (e(r) ®dJ0, u])Hx.

(e(m) ©d[0, v])H(c(r) ® d[0, v]) N




Maximum Likelihood Estimation (4)

Substituting & in J(0) with the above result we get
(7,0) = arg max {|XH(C(7') ®d|o, V])|2} .

In general such a problem can be solved by:

» Two-dimensional grid search

» Gradient method, e.g. Newton’ s method (with “good”

initialization)

The signal phase ¢ + « (considering g[0] € {—1,1}) and power
P can also be determined using the estimate & based on the
estimates 7 and ©
ptm = arg{a}

N

P = |aP




Grid Search

The final cost function that needs to be evaluated is also called
cross ambiguity function (CAF) and for the period k can be
given as

CAFIk; 7,v] = [XH[K](c(r) ® d[k, ])|2.

» To select a suitable strategy to evaluate the CAF and thus
to find its maximum we have to inspect the shape of the
CAF for the problem at hand

» Basic strategies in GNSS acquisition to evaluate the CAF
are:
> Serial search; pairs of time-delay and Doppler frequency
values (bins) are evaluated one by one
» Parallel time-delay acquisition; all possible time-delays are
evaluated in parallel for each Doppler frequency bin
> Parallel Doppler acquisition; all possible Doppler

frequencies are evaluated in parallel for each time-delay bin_,
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Satellite Detection

Signal acquisition determines the presence or absence of a
satellite. Two hypothesis can be defined as

Hi : X[K] = a(e(r) @ d[k, v]) + n[k]
Ho : X[k] = nlk].

» 7y, also called the null hypothesis, is fulfilled when the
desired satellite signal is not received

> H1, also called alternative hypothesis, is fulfilled when the
desired satellite signal is received

» This type of detection problem is called binary hypothesis
testing




Likelihood Ratio Test (1)

Neyman-Pearson Lemma

To maximize the detection probability P, for a given probability
of false alarm P, = p decide the hypothesis  if

L(x;0,H1)

LR =~ x: 7o)

where

P = / L(x; Ho)dx = p
{XILR(X) >~}

P, — / L(x; 0, H1)dX.
(XILR()>}

> LA(x) is called likelihood ratio
> L(x;60,H) and L(x; Ho) denote the likelihood for
E hypothesis #1 and Ho, respectively




Likelihood Ratio Test (2)

Since
— T 12 2
Lx:0.7;) — (W;%)Nexp [_nx (c( 3%@d[o, 1)||2]
2
Loxra) = e

the likelihood ratio can be given as
1
LR(x) = exp [—2 (Ix = a (e(r) @ d[0, )3 - qus)} > .
On

Taking the logarithm on both sides we can write

L (Ix—a(e(r) © d0.])13 ~ [XIE) > log().

On




Likelihood Ratio Test (3)

Rearranging we get

o* (e(r) ® d[0, )" x + ax (¢(r) @ d[0, v])
—ao” (c(r) o d[0, )" (e(r) ©d[0,v]) > o2log(y)
o (¢(r) o d[0, V) x + ax (e(r) ©@d[0,2]) > o2log(y)+ PN
Re{ax! (c(r) @ d[0,])} > W
and defining a new threshold we get

Re{ax! (c(7) © d[0,])} > 7.

LB —k—
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Generalized Likelihood Ratio Test (GLRT) (1)

In case the parameters 6 are not known we can define the
detector to decide H if

L(x;0,1)

GLR(X) = =[5

>y
where 6 is the maximum likelihood estimate or & maximizes
L(x; 6,%,). An equivalent form is to decide # if

L(x;6,H,)

GLR(x) = meax{ L(x #y)

} = mgax{LR(x)} > 7.
Maximizing the the log-likelihood ratio we get

mgx{log(L(X; 6,11)) — log(L(x; Ho))} > log(7).




Generalized Likelihood Ratio Test (GLRT) (2)

Introducing the likelihoods of the two hypothesis we can write
meax {a* (e(r) ®d[0, v])" x + ax! (c(7) ©® d[0, 1])
—aa” (¢(r) @ d[0, )" (e(r) @ d[0. 1)} > oBlog(s)

Taking the derivative of the cost function on the left hand side
with respect to «* and equate to zero we get

(e(r) @ d[0,v])"x
N :

Substituting « in the cost function above with & we get

& =

n;ix{|xH (c(r) @d[0,v]) [*} > No?log(v)

or
max{CAF[k,T,v]} > No2log(y) =+
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Discrete Fourier Transform (DFT)

First, we define the Discrete Fourier Transform (DFT) as
DFT
Analysis equation:

N—1
X[m] =" x[nle ™ ™N = DFT{x[n]}.

n=0
Synthesis equation:

N—1
x[n] = lN > X[mjeP /N = DFT{X[m]}.

m=0




Circular Shift

In case of a finite sequence x[n] a shift in time or in frequency
only makes sense as a circular shift. The circular shift
properties can be given as

DFT{x[(n— ny) mod N]} = e 327m0/N x[m]
and .

DFT {2 Nx[n]} = X[(m — mg) mod N].
The modulo operation can be defined as

a

amodb:a—b{bJ, x| = max{q € Z|q < x}.

For example:

and

4mod2:4—2m —4-2|2|=0.




Circular Cross-Correlation (1)
Consider two finite-duration sequences x1[n] and xz[n] of
duration N with
DFT{xs[nl} = X4[m]
DFT{x[n]} = Xo[m].

The N-point circular cross-correlation can be defined as

N—1
z[n] =) x{[p]xe[(p + n) mod N],0 < n < N.
p=0

The N-point DFT of z[n] can be given as

N—1 N-1

Zlml =" xi[p]xe[(p + n) mod N] e #2mm/N,
n=0 p=0




Circular Cross-Correlation (2)
We can further reformulate

N—1N-1
Zlm] = Z Z X1 [p]x2[(p + n) mod N] e —i2rm(p+n)/Ngj2mmp/N
n=0 p=0
N-1 _ N—1 |
B X [pler /N Z x2[(p + n) mod N e -2mm(p+m/N
p=0 n=0
N—1
— 3 X} [pleP /N Xy [ m]ei2me/ Ne —i2mmp/N
p=0
= XlmXelm]

Thus, in practical problems it is convenient and quite efficient to
derive the circular cross-correlation as

2l = DFT {(DFT{xi[nl})* - DFT eeln}}




Matrix Representation of the DFT (1)
The DFT matrix is an N x N symmetric matrix Wy, where the
m, nth element is given by

mn __ . —j2mmn/N
WN =€

Thus, we can also write the DFT as

N—1
X[m) =Y x[njwg"

n=0
and the inverse DFT (IDFT) as

1 N—1
x[n) = 5 > Xmwy™.

m=0

The DFT of a vector x = [x[0], ..., x[n],...,x[N — 1]]T can be
given as
X; = Wyx




Matrix Representation of the DFT (2)

Here, the vector in frequency is defined as
X; = [X[0],..., X[m],..., X[N —1]]".
The IDFT can be given as
x = Wy, xr.
The following interesting properties of Wy exist:

1

—1 *
WAW5 = Niy
=W

The DFT matrix Wy is a Vandermonde matrix.




Parallel Time-Delay Search (1)
We can now exploit the formulation of the circular
cross-correlation using the DFT to perform a parallel time-delay
search for each Doppler bin as
[ CAF[k;0,v] ]
CAF[k; Ts,v]
flk;v] =&k v @ €k v] = CAF[k; 2Ts, v]

| CAFIk:NTs.1] |
with

£lk; v] = W' [(Wnx[K])* © (W (€(0) © d[K, v]))]
where the Doppler bins and the evaluated time-delays are

veD, = {Vm/na Vmin + By, Vmin + 20, ..., Vmax — Ay, Vmax}

TEDV == {0, T372TS7"'7NTS}
ﬁ the Doppler resolution is A,,.




Parallel Time-Delay Search (2)

The complete CAF can be given in a data matrix
Flk] = [f[K, vmin, - - - . f[K; vmax]]
Detection of available satellites can be performed by
Fij> No%logy =+

where F; ; is the element in the ith row and the jth column of F.
» For each PR sequence ¢(0) a matrix F has to be derived
» In case a satellite was detected using the GLRT the

maximum element of F is used to derive the initial
estimates of v and 7
» The resolution for the Doppler has to be chosen such that
the following parameter tracking process can be initialized
properly




Parallel Time-Delay Search (3)
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