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Signal Acquisition

I Provides a rough estimate of the signal Doppler shift ν and
time-delay τ

I Solves a maximum likelihood estimation problem in a
coarse resolution

I Detects received satellites (separated by codes,
DS-CDMA)

I For each satellite correlator outputs with the same
time-delay and Doppler shift from different epochs/periods
are used to form a decision variable

I If the decision variable passes a threshold, the signal (from
a certain satellite) is assumed to be present/received

I Time-delay and Doppler shift estimates are used to
initialize tracking loops
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Discrete Signal Model (1)
Extending the discrete signal model by introducing a Doppler
shift ν and a carrier phase φ we can write the complex
baseband signal of one satellite as

x[k ] =
√

Pejφg[k ] (c(τ)� d[k , ν]) + n[k ] ∈ CN×1

where

x[k ] = [x(kN Ts), . . . , x((kN + n) Ts), . . . , x((kN + N − 1) Ts)]T

n[k ] = [n(kN Ts), . . . ,n((kN + n) Ts), . . . ,n((kN + N − 1) Ts)]T

c(τ) = [c(τ), . . . , . . . , c(nTs − τ), . . . , c((N − 1)Ts − τ)]T

d[k ; ν] =
[
ej2πνkNTs , . . . , ej2πν (kN+n)Ts , . . . , ej2πν (kN+N−1)Ts

]T

as well as � denoting the Hadamard-Schur product
(element-wise multiplication), n = 0,1, . . . ,N − 1,
k = 0,1, . . . ,K − 1, N ≥ Nd , and N/Nd ∈ N.
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Discrete Signal Model (2)

We assume that the signal is filtered with an ideal lowpass filter
hL(t) and subsequently sampled with a sampling frequency
fs = 1

Ts
= 2B. Thus, the noise n[k ] is complex white Gaussian

noise with

E [n[k ]] = 0

E
[
||n[k ]||22

]
= Nσ2

n

E
[
n[k ]nH[k ]

]
= σ2

nIN

We assume that quantization noise and thermal noise from the
antenna and the LNA are included in n[k ]. Thus,

σ2
n = 2BN0 + 2σ2

q.
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Maximum Likelihood Estimation (1)
For

x = x[0]

let us assume a random variable x has a multivariate Gaussian
probability density function (pdf) parameterized by the
parameters θ = [τ, ν, φ,P,g[0]]T, and thus we get

px(x;θ) =
1

(πσ2
n)N

exp

[
−
‖x−

√
Pejφg[0] (c(τ)� d[0, ν])‖22

σ2
n

]
The likelihood function with respect to the parameter vector θ is
given as

L(x;θ) = px(x;θ)

I L(x;θ) is a function of the parameter vector θ, which is to
be estimated at a given realization of the random variable x

I The pdf px(x;θ) is a function of the realization of the
random variable x for a fixed value of θ
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Maximum Likelihood Estimation (2)
Let us reparameterize the problem with

α =
√

Pejφg[0]

and
θ = [τ, ν, α]T.

Now the maximum likelihood estimator (MLE) can be given as

θ̂ = arg max
θ
{L(x;θ)} = arg max

θ
{log (L(x;θ))} .

The MLE is asymptotically (large N) unbiased and efficient.
When further deriving the estimator we get

θ̂ = arg max
θ

{
log(1)− N log(πσ2

n)− 1
σ2

n
‖x− α(c(τ)� d[0, ν])‖22

}
= arg max

θ

{
−xHx + α∗(c(τ)� d[0, ν])Hx + αxH(c(τ)� d[0, ν])

−α∗α(c(τ)� d[0, ν])H(c(τ)� d[0, ν])
}
.
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Maximum Likelihood Estimation (3)

Now, we can define the cost function

J(θ) = α∗(c(τ)� d[0, ν])Hx + αxH(c(τ)� d[0, ν])

− α∗α(c(τ)� d[0, ν])H(c(τ)� d[0, ν]).

Taking the derivative of J(θ) with respect to α∗ and equating to
zero we get

∂J(θ)

∂α∗
= (c(τ)� d[0, ν])Hx

− α(c(τ)� d[0, ν])H(c(τ)� d[0, ν]) = 0

and

α̂ =
(c(τ)� d[0, ν])Hx

(c(τ)� d[0, ν])H(c(τ)� d[0, ν])
=

(c(τ)� d[0, ν])Hx
N

.
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Maximum Likelihood Estimation (4)

Substituting α̂ in J(θ) with the above result we get

(τ̂ , ν̂) = arg max
τ,ν

{
|xH(c(τ)� d[0, ν])|2

}
.

In general such a problem can be solved by:
I Two-dimensional grid search
I Gradient method, e.g. Newton’ s method (with “good”

initialization)
The signal phase φ± π (considering g[0] ∈ {−1,1}) and power
P can also be determined using the estimate α̂ based on the
estimates τ̂ and ν̂

φ̂± π = arg{α̂}
P̂ = |α̂|2.
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Grid Search
The final cost function that needs to be evaluated is also called
cross ambiguity function (CAF) and for the period k can be
given as

CAF [k ; τ, ν] = |xH[k ](c(τ)� d[k , ν])|2.

I To select a suitable strategy to evaluate the CAF and thus
to find its maximum we have to inspect the shape of the
CAF for the problem at hand

I Basic strategies in GNSS acquisition to evaluate the CAF
are:
I Serial search; pairs of time-delay and Doppler frequency

values (bins) are evaluated one by one
I Parallel time-delay acquisition; all possible time-delays are

evaluated in parallel for each Doppler frequency bin
I Parallel Doppler acquisition; all possible Doppler

frequencies are evaluated in parallel for each time-delay bin
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Satellite Detection

Signal acquisition determines the presence or absence of a
satellite. Two hypothesis can be defined as

H1 : x[k ] = α(c(τ)� d[k , ν]) + n[k ]

H0 : x[k ] = n[k ].

I H0, also called the null hypothesis, is fulfilled when the
desired satellite signal is not received

I H1, also called alternative hypothesis, is fulfilled when the
desired satellite signal is received

I This type of detection problem is called binary hypothesis
testing
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Likelihood Ratio Test (1)
Neyman-Pearson Lemma

To maximize the detection probability Pd for a given probability
of false alarm Pfa = ρ decide the hypothesis H1 if

LR(x) =
L(x;θ,H1)

L(x;H0)
> γ

where

Pfa =

∫
{x|LR(x)>γ}

L(x;H0)dx = ρ

Pd =

∫
{x|LR(x)>γ}

L(x;θ,H1)dx.

I LR(x) is called likelihood ratio
I L(x;θ,H1) and L(x;H0) denote the likelihood for

hypothesis H1 and H0, respectively
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Likelihood Ratio Test (2)

Since

L(x;θ,H1) =
1

(πσ2
n)N

exp

[
−
‖x− α (c(τ)� d[0, ν])‖22

σ2
n

]
L(x;H0) =

1
(πσ2

n)N
exp

[
−
‖x‖22
σ2

n

]
the likelihood ratio can be given as

LR(x) = exp

[
− 1
σ2

n

(
‖x− α (c(τ)� d[0, ν])‖22 − ‖x‖22

)]
> γ.

Taking the logarithm on both sides we can write

− 1
σ2

n

(
‖x− α (c(τ)� d[0, ν])‖22 − ‖x‖22

)
> log(γ).
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Likelihood Ratio Test (3)

Rearranging we get

α∗ (c(τ)� d[0, ν])H x + αxH (c(τ)� d[0, ν])

−αα∗ (c(τ)� d[0, ν])H (c(τ)� d[0, ν]) > σ2
n log(γ)

α∗ (c(τ)� d[0, ν])H x + αxH (c(τ)� d[0, ν]) > σ2
n log(γ) + PN

Re{αxH (c(τ)� d[0, ν])} >
σ2

n log(γ) + PN
2

and defining a new threshold we get

Re{αxH (c(τ)� d[0, ν])} > γ′.
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Generalized Likelihood Ratio Test (GLRT) (1)

In case the parameters θ are not known we can define the
detector to decide H1 if

GLR(x) =
L(x; θ̂,H1)

L(x;H0)
> γ

where θ̂ is the maximum likelihood estimate or θ̂ maximizes
L(x; θ̂,H1). An equivalent form is to decide H1 if

GLR(x) = max
θ

{
L(x;θ,H1)

L(x;H0)

}
= max

θ
{LR(x)} > γ.

Maximizing the the log-likelihood ratio we get

max
θ
{log(L(x;θ,H1))− log(L(x;H0))} > log(γ).
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Generalized Likelihood Ratio Test (GLRT) (2)
Introducing the likelihoods of the two hypothesis we can write

max
θ

{
α∗ (c(τ)� d[0, ν])H x + αxH (c(τ)� d[0, ν])

−αα∗ (c(τ)� d[0, ν])H (c(τ)� d[0, ν])
}

> σ2
n log(γ)

Taking the derivative of the cost function on the left hand side
with respect to α∗ and equate to zero we get

α̂ =
(c(τ)� d[0, ν])H x

N
.

Substituting α in the cost function above with α̂ we get

max
τ,ν
{|xH (c(τ)� d[0, ν]) |2} > Nσ2

n log(γ)

or
max
τ,ν
{CAF [k , τ, ν]} > Nσ2

n log(γ) = γ′.
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Discrete Fourier Transform (DFT)

First, we define the Discrete Fourier Transform (DFT) as

DFT
Analysis equation:

X [m] =
N−1∑
n=0

x [n]e−j2πmn/N = DFT {x [n]}.

Synthesis equation:

x [n] =
1
N

N−1∑
m=0

X [m]ej2πmn/N = DFT −1{X [m]}.
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Circular Shift
In case of a finite sequence x [n] a shift in time or in frequency
only makes sense as a circular shift. The circular shift
properties can be given as

DFT {x [(n − n0) mod N]} = e−j2πmn0/NX [m]

and
DFT {ej2πm0n/Nx [n]} = X [(m −m0) mod N].

The modulo operation can be defined as

a mod b = a− b
⌊a

b

⌋
, bxc = max{q ∈ Z|q ≤ x}.

For example:

−4 mod 5 = −4− 5
⌊
−4
5

⌋
= −4− 5 b−0.8c = 1

and

4 mod 2 = 4− 2
⌊

4
2

⌋
= 4− 2 b2c = 0.
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Circular Cross-Correlation (1)
Consider two finite-duration sequences x1[n] and x2[n] of
duration N with

DFT {x1[n]} = X1[m]

DFT {x2[n]} = X2[m].

The N-point circular cross-correlation can be defined as

z[n] =
N−1∑
p=0

x∗1 [p]x2[(p + n) mod N],0 ≤ n ≤ N.

The N-point DFT of z[n] can be given as

Z [m] =
N−1∑
n=0

N−1∑
p=0

x∗1 [p]x2[(p + n) mod N] e−j2πmn/N .
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Circular Cross-Correlation (2)
We can further reformulate

Z [m] =
N−1∑
n=0

N−1∑
p=0

x∗1 [p]x2[(p + n) mod N] e−j2πm(p+n)/Nej2πmp/N

=
N−1∑
p=0

x∗1 [p]ej2πmp/N
N−1∑
n=0

x2[(p + n) mod N] e−j2πm(p+n)/N

=
N−1∑
p=0

x∗1 [p]ej2πmp/NX2[m]ej2πmp/Ne−j2πmp/N

= X ∗1 [m]X2[m].

Thus, in practical problems it is convenient and quite efficient to
derive the circular cross-correlation as

z[n] = DFT −1 {(DFT {x1[n]})∗ · DFT {x2[n]}} .
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Matrix Representation of the DFT (1)
The DFT matrix is an N × N symmetric matrix WN , where the
m,nth element is given by

W mn
N = e−j2πmn/N

Thus, we can also write the DFT as

X [m] =
N−1∑
n=0

x [n]W mn
N

and the inverse DFT (IDFT) as

x [n] =
1
N

N−1∑
m=0

X [m]W−mn
N .

The DFT of a vector x = [x [0], . . . , x [n], . . . , x [N − 1]]T can be
given as

xf = WNx
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Matrix Representation of the DFT (2)

Here, the vector in frequency is defined as

xf = [X [0], . . . ,X [m], . . . ,X [N − 1]]T.

The IDFT can be given as

x = W−1
N xf .

The following interesting properties of WN exist:

W−1
N =

1
N

W∗N

WNW∗N = NIN
W∗N = WH

N .

The DFT matrix WN is a Vandermonde matrix.
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Parallel Time-Delay Search (1)
We can now exploit the formulation of the circular
cross-correlation using the DFT to perform a parallel time-delay
search for each Doppler bin as

f[k ; ν] = ξ[k ; ν]� ξ∗[k ; ν] =


CAF [k ; 0, ν]
CAF [k ; Ts, ν]
CAF [k ; 2Ts, ν]

...
CAF [k ; NTs, ν]


with

ξ[k ; ν] = W−1
N [(WNx[k ])∗ � (WN (c(0)� d[k , ν]))]

where the Doppler bins and the evaluated time-delays are

ν ∈ Dν = {νmin, νmin + ∆ν , νmin + 2∆ν , . . . , νmax −∆ν , νmax}
τ ∈ Dν = {0,Ts,2Ts, . . . ,NTs}

and the Doppler resolution is ∆ν .
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Parallel Time-Delay Search (2)

The complete CAF can be given in a data matrix

F[k ] = [f[k , νmin], · · · , f[k ; νmax ]]

Detection of available satellites can be performed by

Fi,j > Nσ2
n log γ = γ′

where Fi,j is the element in the i th row and the j th column of F.
I For each PR sequence c(0) a matrix F has to be derived
I In case a satellite was detected using the GLRT the

maximum element of F is used to derive the initial
estimates of ν and τ

I The resolution for the Doppler has to be chosen such that
the following parameter tracking process can be initialized
properly
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Parallel Time-Delay Search (3)
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