Lecture 10 Satellite orbits and clocks computation and accuracy

Professors: Dr. J. Sanz Subirana, Dr. J.M. Juan Zornoza and Dr. Adrià Rovira García

Galileo Masterclass Brazil (GMB) 2022

From Fundamentals to Signal and Data Processing

www.gage.upc.edu

DE CATALUNYA

BARCELONATECH

UNIVERSITAT POLITÈCNICA

* * * *

Projeto financiado pela União Europeia

Authorship statement

The authorship of this material and the Intellectual Property Rights are owned by J. Sanz Subirana and J.M. Juan Zornoza.

These slides can be obtained either from the server http://www.gage.upc.edu, or jaume.sanz@upc.edu. Any partial reproduction should be previously authorized by the authors, clearly referring to the slides used.

This authorship statement must be kept intact and unchanged at all times.

August 2022

2

gAGE

QAGE/UPC research group of Astronomy and Geomatics

Barcelona **TECH**,

Contents

- 1. Elliptic orbit: Keplerian elements.
- 2. Perturbed Keplerian orbits: Osculating orbit.
- 3. GPS satellite coordinates computation and accuracy
 - 3.1. From Broadcast Navigation Message.
 - 3.2. From precise products.
- 4. GPS Satellite clock computation and accuracy
 - 4.1. From Broadcast Navigation Message.
 - 4.2. From precise products.

3

Contents

- 1. Elliptic orbit: Keplerian elements.
- 2. Perturbed Keplerian orbits: Osculating orbit.
- 3. GPS satellite coordinates computation and accuracy
 - 3.1. From Broadcast Navigation Message.
 - 3.2. From precise products.
- 4. GPS Satellite clock computation and accuracy
 - 4.1. From Broadcast Navigation Message.
 - 4.2. From precise products.

gAGE

gAGE/UPC research group of Astronomy and Geomatics

С Ш

BarcelonaT

(X, Y, Z, Vx, Vy, Vz) \rightarrow (a, e, i, Ω , ω , V)

6 values are needed (x,y,z,vx,vy,vz) to provide the position and velocity of a body. They can be map into the **six Keplerian elements** $(a, e, i, \Omega, \omega, V)$, which provides the "natural" representation of the orbit!

www.gage.upc.edu

Brazil

- œ

gAGE/UPC research group of Astronomy and Geomatics

www.gage.upc.edu

Brazil

Contents

- 1. Elliptic orbit: Keplerian elements.
- 2. Perturbed Keplerian orbits: Osculating orbit.
- 3. GPS satellite coordinates computation and accuracy
 - 3.1. From Broadcast Navigation Message.
 - 3.2. From precise products.
- 4. GPS Satellite clock computation and accuracy
 - 4.1. From Broadcast Navigation Message.
 - 4.2. From precise products.

9

Due to the non-spherical nature of gravitational potential, the attraction of the Sun and Moon, the solar radiation pressure, etc., **the true satellite path deviates from the elliptic orbit**.

gAGE

Brazil

GALILEO EGN S

At any time an elliptical orbit tangent to the true path can be defined. This is the "osculating orbit", whose Keplerian elements vary with time "t":

$a(t), e(t), i(t), \Omega(t), \omega(t), V(t)$

Different magnitudes of perturbation and their effects on GPS orbits

Perturbation	Acceleration	Orbital effect	
reiturbation	(m/s ²)	in 3 hours	in 3 days
Central force	0.56		
(as a reference)			
J_2	$5 \cdot 10^{-5}$	2 km	14 km
Rest of the harmonics	$3 \cdot 10^{-7}$	50–80 m	100–1500 m
Solar + Moon grav.	$5 \cdot 10^{-6}$	5–150 m	1000–3000 m
Tidal effects	$1 \cdot 10^{-9}$		0.5–1.0 m
Solar rad. pressure	$1 \cdot 10^{-7}$	5–10 m	100–800 m

GLONASS Broadcast orbit integration terms

gAGE/UPC research group of Astronomy and Geomatics

Barcelona**TECH**,

Brazil

gAGE/UPC research group of Astronomy and Geomatics Barcelona **TECH**,

gAGE

www.gage.upc.edu

Brazil

gAGE/UPC research group of Astronomy and Geomatics Barcelona **TECH**,

gAGE

www.gage.upc.edu

Brazil

Satellite

Equator

Calculation of osculating orbital elements from position and velocity (rv2osc.f)

$$(x, y, z, v_x, v_z, v_z) \Rightarrow (a, e, i, \Omega, \omega, M)$$

$$egin{aligned} ec{c} &= ec{r} imes ec{v} \Longrightarrow p = rac{c^2}{\mu} \Longrightarrow p \ \mathbf{v}^2 &= \mu(2/r-1/a) \Longrightarrow egin{aligned} \mathbf{a} \ \mathbf{p} &= \mathbf{a} \ (1 - \mathbf{e}^2) \Longrightarrow egin{aligned} \mathbf{e} \ \mathbf{e} \end{aligned}$$

$$ec{c}=cec{S}\Longrightarrow \Omega=rctan(-c_x/c_y); \hspace{0.2cm} i=rccos(c_z/c)\Longrightarrow \Omega, i$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = R \begin{pmatrix} r\cos(V) \\ r\sin(V) \\ 0 \end{pmatrix} = r \begin{pmatrix} \cos\Omega\cos(\omega+V) - \sin\Omega\sin(\omega+V)\cos i \\ \sin\Omega\cos(\omega+V) + \cos\Omega\sin(\omega+V)\cos i \\ \sin(\omega+V)\sin i \end{pmatrix} \Longrightarrow \omega + V$$

$$r = \frac{p}{1 + e\cos(V)} \Longrightarrow \omega, V$$

$$\tan(E/2) = \left(\frac{1-e}{1+e}\right)^{1/2} \tan(V/2) \quad ; \quad M = E - e \sin E \Longrightarrow M$$

Brazil

www.gage.upc.edu

15

Calculation of position and velocity from osculating orbital elements (osc2rv.f)

$$\begin{aligned} \begin{pmatrix} a, e, i, \Omega, \omega, \underline{T}; t \end{pmatrix} \Rightarrow \begin{pmatrix} x, y, z, v_x, v_z, v_z \end{pmatrix} \\ \hline t \implies M \implies E \implies (r, V) \\ M = n(t - T) \qquad M = E - e \sin E \qquad r = a(1 - e \cos E) \\ & \tan(V/2) = (\frac{1 + e}{1 - e})^{1/2} \tan(E/2) \end{aligned}$$
$$\begin{aligned} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = R \begin{pmatrix} r \cos(V) \\ r \sin(V) \\ 0 \end{pmatrix} ; \quad \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = \frac{na^2}{r} \{ \vec{Q}(1 - e^2)^{1/2} \cos E - \vec{P} \sin E \} \end{aligned}$$

Where:

$$\begin{aligned} \mathbf{R} &= \mathbf{R}_{3}(-\Omega)R_{1}(-i)R_{3}(-\omega) = \\ &= \begin{pmatrix} \cos\Omega & -\sin\Omega & 0\\ \sin\Omega & \cos\Omega & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos i & -\sin i\\ 0 & \sin i & \cos i \end{pmatrix} \begin{pmatrix} \cos\omega & -\sin\omega & 0\\ \sin\omega & \cos\omega & 0\\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \mathbf{P}_{x} & \mathbf{Q}_{x} & \mathbf{S}_{x}\\ \mathbf{P}_{y} & \mathbf{Q}_{y} & \mathbf{S}_{y}\\ \mathbf{P}_{z} & \mathbf{Q}_{z} & \mathbf{S}_{z} \end{pmatrix} = [\vec{P} \ \vec{Q} \ \vec{S}] \end{aligned}$$

www.gage.upc.edu

Brazil

16

Exercise: Orbital elements variation:

File 1995-10-18.eci contains the precise position and velocities of GPS satellites every 5 minutes for October 18th, 1995 in a Earth-Centred Inertial system (ECI) [from JPL/NASA server:

ftp://sideshow.jpl.nasa.gov/pub/gipsy_products

- a) Use program "rv2osc" to compute the instantaneous orbital eleme (X, Y, Z, Vx, Vy, Vz) → (a, e, i, Ω, ω, V)
- b) Plot the orbital elements in function of time to show their variation: a(t), e(t), i(t), Ω(t), ω(t), V(t)
- c) Compare with the broadcast orbital elements

Solution:

a) cat 1995-10-18.eci|rv2osc> orb.datb) See the following plots

Brazil

17

GALILEO EGN

gAGE/UPC research group of Astronomy and Geomatics ECH BarcelonaT

GALILEO EGN

Brazil

Contents

- 1. Elliptic orbit: Keplerian elements.
- 2. Perturbed Keplerian orbits: Osculating orbit.
- 3. GPS satellite coordinates computation and accuracy
 - 3.1. From Broadcast Navigation Message.
 - 3.2. From precise products.
- 4. GPS Satellite clock computation and accuracy
 - 4.1. From Broadcast Navigation Message.
 - 4.2. From precise products.

gAGE

GPS navigation message

One Master Frame includes All 25 pages of Subframes #4 and $#5 \rightarrow 25 \times 30s = 12.5 \text{ min}$

qAGE

gAGE

Subframe 1 contains information about the parameters to be applied to **satellite clock** status for its correction. These values are polynomial coefficients that allow time onboard to be converted to GPS time. The subframe also contains information on satellite health condition.

Subframes 2 and 3 contain satellite ephemerides.

Subframe 4 provides **ionospheric model** parameters (in order to adjust for ionospheric refraction), UTC information, part of the **almanac**, and indications whether the A/S is activated or not (which transforms the P code into encrypted Y code).

Subframe 5 contains data from the **almanac** and on constellation status. It allows rapid identification of the satellite from which the signal comes. A total of 25 frames are needed to complete the almanac.

Ephemeris in navigation message

Parameter	Explanation		
IODE	Series number of ephemerides data		
t_{oe}	Ephemerides reference epoch		
\sqrt{a}	Square root of semi-major axis		
e	Eccentricity		
M_o	Mean anomaly at reference epoch		
ω	Argument of perigee		
i_o	Inclination at reference epoch		
Ω	Ascending node's right ascension		
Δn	Mean motion difference		
$\overset{\bullet}{i}$	rate of inclination angle		
Ω	Rate of node's right ascension		
c_{uc}, c_{us}	Latitude argument correction		
C_{rc}, C_{rs}	Orbital radius correction		
c_{ic}, c_{is}	Inclination correction		

In order to calculate WGS84 satellite coordinates, you should apply de following algorithm [GPS/SPS-SS, table 2-15] (see in the book FORTRAN subroutine orbit.f)

www.gage.upc.edu

www.gage.upc.edu

Brazil

24

3.1. Computation of satellite coordinates from navigation message (orbit.f)

• Computation of t_k time since ephemerids reference epoch t_{oe} (*t* and t_{oe} are given in GPS seconds of week):

$$t_k = t - t_{oe}$$

• Computation of mean anomaly M_k for $t_{k'}$

Brazil

$$M_{k} = M_{0} + \left(\frac{\sqrt{\mu}}{\sqrt{a^{3}}} + \Delta n\right) t_{k}$$

• Iterative resolution of Kepler's equation in order to compute eccentric anomaly E_k :

$$M_k = E_k - e\sin E_k$$

• Calculation of true anomaly v_k :

$$v_k = \arctan\left(\frac{\sqrt{1-e^2}\sin E_k}{\cos E_k - e}\right)$$

• Computation of latitude argument u_k from perigee argument W, true anomaly v_k and corrections c_{uc} and c_{us} :

$$u_{k} = \omega + v_{k} + c_{uc} \cos 2(\omega + v_{k}) + c_{us} \sin 2(\omega + v_{k})$$

www.gage.upc.edu

25

gAGE

• Computation of radial distance r_{kr} taking into consideration corrections c_{rc} and c_{rs} :

$$v_k = a\left(1 - 2\cos E_k\right) + c_{rc}\cos 2\left(\omega + v_k\right) + c_{rs}\sin 2\left(\omega + v_k\right)$$

• Calculation of orbital plane inclination i_k from inclination i_o at reference epoch t_{oe} and corrections c_{ic} and c_{is} :

$$\vec{t}_{k} = \vec{i}_{0} + it_{k} + c_{ic}\cos 2(\omega + v_{k}) + c_{is}\sin 2(\omega + v_{k})$$

• Computation of ascending node longitude Ω_k (Greenwich), from longitude Ω_0 at start of GPS week, corrected from apparent variation of sidereal time at Greenwich between start of week and and reference time $t_k = t - t_{oe'}$ and also corrected from change of ascending node longitude since reference epoch $t_{oe'}$.

$$\Omega_{k} = \Omega_{0} + (\Omega - \omega_{E})t_{k} - \omega_{E}t_{oe}$$

Calculation of coordinates in CTS system, applying three rotations

(around $u_{kr} i_{kr} \Omega_k$):

$$\begin{bmatrix} \mathbf{K}_{k} \\ \mathbf{K}_{k} \\ \mathbf{K}_{k} \end{bmatrix} = \mathbf{R}_{3}(-\boldsymbol{\Omega}_{k})\mathbf{R}_{1}(-\boldsymbol{i}_{k})\mathbf{R}_{3}(-\boldsymbol{u}_{k})\begin{bmatrix} \boldsymbol{r}_{k} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}$$

www.gage.upc.edu

Brazil

www.gage.upc.edu

Barcelona

gAGE

pain

ഗ

5

Π

research gi

Contents

- 1. Elliptic orbit: Keplerian elements.
- 2. Perturbed Keplerian orbits: Osculating orbit.
- 3. GPS satellite coordinates computation and accuracy
 - 3.1. From Broadcast Navigation Message.
 - 3.2. From precise products.
- 4. GPS Satellite clock computation and accuracy
 - 4.1. From Broadcast Navigation Message.
 - 4.2. From precise products.

gAGE

3.2 Computation of satellite coordinates from precise products.

Precise orbits for GPS satellites can be found on the International GNSS Service (IGS) server http://igscb.jpl.nasa.gov

Orbits are given by (x,y,z) coordinates with a sampling rate of 15 minutes. The satellite coordinates between epochs can be computed by polynomial interpolation. A 10th-order polynomial is enough for a centimetre level of accuracy with 15 min data.

$$P_{n}(x) = \sum_{i=1}^{n} y_{i} \frac{\prod_{j \neq i} (x - x_{j})}{\prod_{j \neq i} (x_{i} - x_{j})}$$

$$= y_{1} \frac{x - x_{2}}{x_{1} - x_{2}} \cdots \frac{x - x_{n}}{x_{1} - x_{n}} + \cdots$$

$$+ y_{i} \frac{x - x_{1}}{x_{i} - x_{1}} \cdots \frac{x - x_{i-1}}{x_{i} - x_{i-1}} \frac{x - x_{i+1}}{x_{i} - x_{i+1}} \cdots \frac{x - x_{n}}{x_{i} - x_{n}} + \cdots$$

$$+ y_{n} \frac{x - x_{1}}{x_{n} - x_{1}} \cdots \frac{x - x_{n-1}}{x_{n} - x_{n-1}}$$

www.gage.upc.edu

Brazil

31

IGS orbit and clock products (for PPP):

Discrepancy between CODE and IGS combined product.

www.gage.upc.edu

Brazil

Contents

- 1. Elliptic orbit: Keplerian elements.
- 2. Perturbed Keplerian orbits: Osculating orbit.
- 3. GPS satellite coordinates computation and accuracy
 - 3.1. From Broadcast Navigation Message.
 - 3.2. From precise products.
- 4. GPS Satellite clock computation and accuracy
 - 4.1. From Broadcast Navigation Message.
 - 4.2. From precise products.

GPS Satellite Clock computation: Broadcast message

	$dt^{sat} = a_0 + a_1(t - t_0) + a_2(t - t_0)^2$								
		tO	a 0	a1	a2				
F	PRN 	мм рд н м з							
2 STI CAS	/v1.8.1.4 A 444431.20	NAVIGATION BAI 1 -4428688.6	N DATA GPS 95 5270 3875750.1442	RINEX	VERSION / TYPE PGM / RUN BY / DATE COMMENT COMMENT				
	95 10 18 1.730000 -2.712011 2.623040 9.636381 -5.178787 3.200000 2.592180	00 51 44.0 1. 000000D+02-5. 337280D-06 2. 000000D+05 4. 916043D-01 2. 145843D-11 1. 000000D+01 0. 000000D+05 0.	129414886236D-05 17500000000D+01 427505562082D-03 470348358154D-08 153437500000D+02 000000000000D+00 0000000000D+00	1.136868377216D-13 4.375182243902D-09 8.568167686462D-06 1.698435481558D+00 3.056960010495D+00 8.23000000000D+02 1.396983861923D-09 0.00000000000D+00	0.000000000000000000000000000000000000				

www.gage.upc.edu

Brazil

Computation of satellite clocks from precise products

Precise clocks for GPS satellites can be found on the International GNSS Service (IGS) server http://igscb.jpl.nasa.gov

They are providing precise orbits and clock files with a sampling rate of 15 min (SP3 files), as well as precise clock files with a sample rate of 5 min and 30 s (CLK files).

Some centres also provide GPS satellite clocks with a 5 s sampling rate, like the les obtained from the Crustal Dynamics Data Information System (CDDIS) site.

Stable clocks with a sampling rate of 30 s or higher can be interpolated with a first-order polynomial to a few centimetres of accuracy. Clocks with a lower sampling rate should not be interpolated, because clocks evolve as random walk processes.

SA=off

36

Precise Clock Interpolation: 300s samples

* (e

GALILEO EGN

www.gage.upc.edu

Precise Clock Interpolation: 30s samples

www.gage.upc.edu

- · e GALILEO EGN

Brazil

39

Barcelona**TECH**,

QAGE/UPC research group of Astronomy and Geomatics

I

Ö

arcelonaT

m

Selective Availability (S/A): Intentional degradation of satellite clocks and broadcast ephemeris. (from 25 March, 1990)

GPS Before and After S/A was switched off

S/A was switched off at 2nd May 2000 and Permanently removed in 2008

www.gage.upc.edu

GALILEO INFORMATION CENTRE Brazil

GALILEO EGN

Brazil

gAGE/UPC research group of Astronomy and Geomatics CH Ш BarcelonaT

gAGE

@ J. Sanz & J.M. Juan

gAGE/UPC research group of Astronomy and Geomatics Barcelona **TECH**,

gAGE

GALILEO INFORMATION CENTRE

Brazil

gAGE gAGE/UPC research group of Astronomy and Geomatics ECH, **BarcelonaT**

GALILEO EGN

Brazil

References

[RD-1] J. Sanz Subirana, J.M. Juan Zornoza, M. Hernández-Pajares, GNSS Data processing. Volume 1: Fundamentals and Algorithms. ESA TM-23/1. ESA Communications, 2013.

- [RD-2] J. Sanz Subirana, J.M. Juan Zornoza, M. Hernández-Pajares, GNSS Data processing. Volume 2: Laboratory Exercises. ESA TM-23/2. ESA Communications, 2013.
- [RD-3] Pratap Misra, Per Enge. Global Positioning System. Signals, Measurements, and Performance. Ganga –Jamuna Press, 2004.

[RD-4] B. Hofmann-Wellenhof et al. GPS, Theory and Practice. Springer-Verlag. Wien, New York, 1994.

qAGE

gAGE

Thank you

www.gage.upc.edu

GALILEO INFORMATION CENTRE Brazil

www.gage.upc.edu

Brazil

GNSS Data Processing, Vol. 1: Fundamentals and Algorithms. **GNSS** Data Processing, Vol. 2: Laboratory exercises.

www.gage.upc.edu

