Ref.:
Iss./Rev.: 1.0
Date: 16/11/2018

Create Static build of Qt for gLAB GUI for Linux ARMv7

This is a small guide for creating a statically linked build of Qt in Linux ARMv7 cross-compiled
in a Linux x64. This will allow creating a statically linked build of your Qt based application.

What is a cross-compilation and what is the reason to cross-compile?

Cross compiling is to compile a binary in a host that has a different architecture than the target
computer. In this case, the compilation is done on an x64 host and the target is a Linux ARMv7
32 bit (such as Raspberry Pi or Odroid). Although ARM devices can compile Qt themselves, it
is much faster to do it in an x64 machine (even though the host is a virtual machine).

How does a cross-compilation work?
To do a cross-compilation, the following steps have to be done:

1. Download Qt sources

2. Download a cross-compiler (a compiler that runs on your host machine and produces
code for the target machine).

3. Create a folder where a copy of the target operative system is installed along with all
the necessary libraries to compile (this folder will contain all the folder hierarchy of a
Linux OS)

4. Cross-compile using the cross-compiler and the libraries from the target machine.

What cross-compiler are you using?

The cross-compiler used is Linaro ToolChain “arm-linux-gnueabihf’ version 7.3.1
(https://releases.linaro.org/components/toolchain/binaries/latest-7/). It is based on GCC, an
according to the release notes, only version 7 or later must be used, as GCC 5 and 6 has a
bug that may produce incorrect code on ARM.

What is the most problematic part of the cross-compilation?

The most problematic part is that the cross-compiler has difficulties finding the target libraries.
Therefore, it is necessary to manually provide the cross-compiler most of the folders where
the libraries are saved (see step 21). If any path library wants to be added, both Qt and the
application have to be rebuilt (repeat steps from step 21).

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafez (JAGE/UPC) Page 1 of 17

https://releases.linaro.org/components/toolchain/binaries/latest-7/

What is the difference between dynamic and static linking?

With dynamic linking, the necessary libraries to run our program are in external files, therefore
you need to provide all the libraries along with your executable.

With static linking, the necessary libraries to run our program are all embedded inside the
executable, therefore, our executable is a stand-alone program.

Does this guide also work for building other Qt programs (no gLAB)?

Yes, but you need to make sure that in step 10 all the necessary libraries are provided for your
application. gLAB GUI uses only basic libraries of Qt.

What Qt version are you using for this guide?

In this guide, there are steps for compiling with Qt version 5.7.1 or the last Qt version available
at git repository, although any Qt version may work.

Does this guide work with other Qt versions?

Yes, but you will need to use newer versions of Ubuntu (or other Linux) for higher Qt versions
(5.6 or greater). Libraries needed in step 10 may change its name or additional libraries may
be needed. Also, parameters for step 5 may change

What Linux version are you using for this guide?

There are two Linux versions in this guide. In this case, the host machine is an Ubuntu 14.04.
The Linux version of the host machine is not important as long as it supports the Qt version
you are using to compile.

The target host is an Ubuntu 14.04 for ARMv7 (hf). The “hf’” stands for “hard-floated”, which
means that the target ARM device supports hardware-floating operations. The target Ubuntu
version must be the minimum Linux version to be supported for your target device, as Linux is
forward compatible but not backwards compatible (for instance, compiling in Ubuntu 14.04 will
make your application on this version and newer ones, but not in older ones).

It is recommend following these guide using an Ubuntu virtual machine with 4 CPUS, 4GB of
RAM and 30GB of hard drive.

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafez (JAGE/UPC) Page 2 of 17

Steps for a static build of Qt in Linux:

1) Open aterminal and become root user:
sudo su -
2) Install programs in the host machine

apt-get install build-essential perl python git sed xz-utils

3) Install tools to create a fake system filesystem

apt-get install gemu-user-static debootstrap

4) The folder where the target filesystem will be mounted will be “/rootfsarm/root”, but it can
be mounted anywhere else.

export ROOTFS=/rootfsarm/root
mkdir —-p $ROOTFS #directory which will become /
cd $ROOTFS

5) Create a new armhf system of trusty (Ubuntu 14.04). This command will install the
minimum number of required packages in order to boot the target system: Everything else
(libraries needed for Qt) will be installed through apt command

If user wants to use another Linux version, change the distribution name “trusty” to the
desired one and the source URL (if it is not a Ubuntu distribution).

gemu-debootstrap --arch=armhf --variant=minbase trusty .
http://ports.ubuntu.com/ubuntu-ports

6) Add package sources to sources.list file of the armhf distribution (if the user Linux
distribution is different, change the distribution name and URL).

echo "deb http://ports.ubuntu.com/ubuntu-ports/ trusty main restricted
deb-src http://ports.ubuntu.com/ubuntu-ports/ trusty main restricted

deb http://ports.ubuntu.com/ubuntu-ports/ trusty-updates main restricted
deb-src http://ports.ubuntu.com/ubuntu-ports/ trusty-updates main restricted

deb http://ports.ubuntu.com/ubuntu-ports/ trusty universe

deb-src http://ports.ubuntu.com/ubuntu-ports/ trusty universe

deb http://ports.ubuntu.com/ubuntu-ports/ trusty-updates universe
deb-src http://ports.ubuntu.com/ubuntu-ports/ trusty-updates universe

deb http://ports.ubuntu.com/ubuntu-ports/ trusty multiverse

deb-src http://ports.ubuntu.com/ubuntu-ports/ trusty multiverse

deb http://ports.ubuntu.com/ubuntu-ports/ trusty-updates multiverse
deb-src http://ports.ubuntu.com/ubuntu-ports/ trusty-updates multiverse

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafez (JAGE/UPC) Page 3 of 17

deb http://ports.ubuntu.com/ubuntu-ports/ trusty-backports main restricted universe multiverse
deb-src http://ports.ubuntu.com/ubuntu-ports/ trusty-backports main restricted universe
multiverse

deb http://archive.canonical.com/ubuntu trusty partner
deb-src http://archive.canonical.com/ubuntu trusty partner

deb http://ports.ubuntu.com/ubuntu-ports/ trusty-security main restricted

deb-src http://ports.ubuntu.com/ubuntu-ports/ trusty-security main restricted

deb http://ports.ubuntu.com/ubuntu-ports/ trusty-security universe

deb-src http://ports.ubuntu.com/ubuntu-ports/ trusty-security universe

deb http://ports.ubuntu.com/ubuntu-ports/ trusty-security multiverse

deb-src http://ports.ubuntu.com/ubuntu-ports/ trusty-security multiverse" >
${ROOTFS}/etc/apt/sources.list

7) Change the root directory, which will make to effectively work in the target filesystem.
chroot .

8) Check the architecture of your distribution is arm (the output of the command should be
arm)

uname -m
9) Update repositories in the target filesytem

apt-get update
apt-get upgrade

10) Install libraries on target machine

apt-get install libstdc++-4.8-dev libc6-dev libssl-dev perl

apt-get install build-essential linux-headers-$(uname -r) python

apt-get install libgl1-mesa-dev libfontconfigl-dev libfreetype6-dev libx11-dev libxext-
dev libxfixes-dev libxi-dev libxrender-dev libxcb1-dev libxcbl libx11-xcb-dev libx11-xcbl
libxcb-glx0-dev libxcb-keysyms1-dev libxcb-imageO-dev libxcb-shmO-dev libxcb-icccm4-dev
libxcb-sync-dev libxcb-xfixes0-dev libxcb-shape0O-dev libxcbh-randrO-dev libxcb-render-util0-
dev libjasper-dev libmng-dev libjpeg-dev libpngl12-dev libtiff5-dev libgif-dev libxcb-xinerama0O-
dev libxcb-xineramaO-dev "Mibxcb.*-dev' "Mibxcb.* libx11-xcb-dev libglul-mesa-dev
libxrender-dev libxi-dev

apt-get install libxcb1 libxcb-utilO libpam-dev libcairo-dev libxcb-xinerama0 libev-dev
libx11-dev libx11-xcb-dev libxkbcommonO libxkbcommon-x11-dev libxkbcommon-dev libxcb-
dpmsO0-dev libxcb-xineramaO-dev libxkbfile-dev libxcb-utilO-dev libxcb-image0-dev fontconfig
libfreetype6 libfreetype6-dev

11) Exit chroot (return to host filesystem)

exit

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafez (JAGE/UPC) Page 4 of 17

12) Exit root user (back to normal user in host machine)
exit

13) Create files directory (In this case “/files” will be used, which will be a folder accessible by
any user)

sudo mkdir /files
sudo chown $USER:$USER ffiles

14) Change to “/files” directory
cd /files
15) Download cross compiler (Linaro version arm-linux-gnueabihf 7.3.1) and uncompress it
mkdir linaro
cd linaro
wget https://releases.linaro.org/components/toolchain/binaries/latest-7/arm-linux-

gnueabihf/gcc-linaro-7.3.1-2018.05-x86 64 arm-linux-gnueabihf.tar.xz
tar -xvJf gcc-linaro-7.3.1-2018.05-x86_64_arm-linux-gnueabihf.tar.xz

16) Install Qt. There are two options:
A) Install last Qt version from git

a. Change to “/files” directory
cd ffiles

b. Clone Qt git repository and initialize it
git clone git://code.qt.io/qt/qt5.git
cd gts
Jinit-repository #This will take some minutes

c. Install Qt creator

sudo apt-get install gtcreator

B) Download Qt installator and install Qt. In this case Qt 5.7.1 is used. Make sure that
Qt is installed in “/files/qtS” folder and that during installation “Sources” and
“QtCreator” options is selected.

a. Change to “/files” directory

cd ffiles

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafez (JAGE/UPC) Page 5 of 17

https://releases.linaro.org/components/toolchain/binaries/latest-7/arm-linux-gnueabihf/gcc-linaro-7.3.1-2018.05-x86_64_arm-linux-gnueabihf.tar.xz
https://releases.linaro.org/components/toolchain/binaries/latest-7/arm-linux-gnueabihf/gcc-linaro-7.3.1-2018.05-x86_64_arm-linux-gnueabihf.tar.xz

b. Download Qt5.71 installator

wget http://mirrors.ukfast.co.uk/sites/qt.io/archive/qt/5.7/5.7.1/qt-
opensource-linux-x64-5.7.1.run

c. Add executable permissions to Qt installator
chmod +x gt-opensource-linux-x64-5.7.1.run
d. Install Qt

Jqt-opensource-linux-x64-5.7.1.run

17) Become root again

sudo su -

18) Add environment variables to current session and to .bashrc file

export PATH=$PATH:/files/linaro/gcc-linaro-7.3.1-2018.05-x86_64_arm-linux-
gnueabihf/bin/

ROOTFS=/rootfsarm/root

TRIPLET=$(arm-linux-gnueabihf-g++ -dumpmachine) #becomes arm-linux-
gnueabihf

export
PKG_CONFIG_LIBDIR=${ROOTFS}/ustr/lib/pkgconfig:${ROOTFS}/usr/share/pkgconfig:$
{ROOTFS}ustr/lib/arm-linux-gnueabihf:${ROOTFS}/ust/lib/arm-linux-
gnueabihf/pkgconfig:3{ROOTFS}/Ilib/arm-linux-gnueabihf’

echo 'export PATH=$PATH:/files/linaro/gcc-linaro-7.3.1-2018.05-x86_64_arm-linux-
gnueabihf/bin/* >> /root/.bashrc

echo "ROOTFS=/rootfsarm/root" >> /root/.bashrc

echo “TRIPLET=$(arm-linux-gnueabihf-g++ -dumpmachine)” >> /root/.bashrc

echo “export
PKG_CONFIG_LIBDIR=${ROOTFS}/usr/lib/pkgconfig:${ROOTFS}/usr/share/pkgconfig:$
{ROOTFS}ustr/lib/arm-linux-gnueabihf/pkgconfig:${ROOTFS}/usr/lib/arm-linux-
gnueabihf:${ROOTFS}/lib/arm-linux-gnueabihf’ >> /root/.bashrc

19) Soft-links in the target filesystem “/usr/lib” (in the host directory $ROOTFS/usr/lib) must
have relative soft links, otherwise the soft link will point to the host rather than the target
filesystem (these commands have to be executed again if user installs more libraries in the
target filesystem after applying these commands).

cd ffiles

git clone https://github.com/rm5248/cross-compile-tools.qit

.cross-compile-tools/fixQualifiedLibraryPaths ${ROOTFS} /files/linaro/gcc-linaro-
7.3.1-2018.05-x86_64_arm-linux-gnueabihf/bin/arm-linux-gnueabihf-g++

cd $ROOTFS/ustr/lib/arm-linux-gnueabihf

Is -l [grep M]awk '$NF~/"V/ {print "rm "$(NF-2)" && In -s ../../.."$NF,$(NF-2) }'|bash

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafez (JAGE/UPC) Page 6 of 17

https://github.com/rm5248/cross-compile-tools.git

20) This step is only for Ubuntu 14.04: In Ubuntu 14.04, the library “$ROOTFS/
usr/include/arm-linux-gnueabihf/bits/mathcalls.h” has a bug which makes the compilation
fail. The steps to fix the library (add 4 lines of codes) is provided in
https://patches.linaro.org/patch/59550/, but also the user can just substitute the library by
the file embedded in this pdf

[
mathcalls.zip
21) Create Qt mkspec for ARM. It is critical in this phase to add the paths of the libraries to be
used by the linker, as if they are not manually provided, probably the linker will not find

them. These paths are provided using the Qt variables “QMAKE_LFLAGS” and “LIBS”. For
Qt builds that use more Qt libraries than gLAB, maybe more paths must be added.

cd /files/qts

cp -r gtbase/mkspecs/linux-arm-gnueabi-g++ gtbase/mkspecs/linux-arm-gnueabihf-
g++

sed -i 's/arm-linux-gnueabi/arm-linux-gnueabihf/g' gtbase/mkspecs/linux-arm-
gnueabihf-g++/gmake.conf

echo "QMAKE_LFLAGS += -WI,-rpath-link,${ROOTFS}/lib/arm-linux-gnueabihf/
QMAKE_LFLAGS += -WI,-rpath-link,3{ROOTFS}/usr/lib/arm-linux-gnueabihf" >>
gtbase/mkspecs/linux-arm-gnueabihf-g++/gmake.conf
echo "LIBS += -L/rootfsarm/root/ust/lib/arm-linux-gnueabihf/qt5/plugins/platforms
LIBS += -L${ROOTFS}/usr/lib/arm-linux-gnueabihf/qt5/plugins/imageformats
LIBS += -L${ROOTFS}/usr/lib/arm-linux-gnueabihf/qt5/plugins/bearer
LIBS += -L${ROOTFS}/usr/lib/arm-linux-gnueabih" >> gqtbase/mkspecs/linux-arm-
gnueabihf-g++/gmake.conf

22) Create the Qt Makefile using the “configure” command. It is recommended to disable all Qt
libraries not used in your application, as Qt often links to all the system libraries required
by the Qt modules for all Qt modules available even though the application does not use
them (for instance, “libudev” or “libts”). The system library usually cannot be static linked,
therefore the more system libraries linked in your application, the more libraries the target
system has to be installed, whilst the objective is to have the minimum libraries to be
installed in the target system.

The target Qt5 installation directory is “/usr/share/qt5” (defined in parameter “-hostprefix”).

1. If Qt from git is installed

Jconfigure -static -opensource -release -confirm-license -no-compile-examples -
nomake tests -qt-zlib -qt-libpng -qt-libjpeg -qt-freetype -qt-pcre -qt-harfbuzz -
prefix /usr -bindir /usr/lib/$TRIPLET/qt5/bin -libdir /usr/lib/$TRIPLET -headerdir
lusr/include/$TRIPLET/qt5 -datadir /usr/share/qt5 -archdatadir
usr/lib/$TRIPLET/qt5 -plugindir /usr/lib/$TRIPLET/qt5/plugins -importdir
/usr/lib/$TRIPLET/qt5/imports -translationdir /usr/share/gt5/translations -
hostdatadir /usr/share/qt5 -xplatform linux-arm-gnueabihf-g++ -platform linux-g++
-sysroot $ROOTFS -hostprefix /usr/share/qt5 -no-opengl -no-assimp -skip
gtdeclarative -skip gtlocation -skip gtmultimedia -skip gtquickcontrols -skip
gtsensors -skip gtwebchannel -skip gtwebengine -no-qt3d-simd -no-sql-sqlite -
skip wayland -skip xmlpatterns

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafez (JAGE/UPC) Page 7 of 17

https://patches.linaro.org/patch/59550/

2. IfQt5.7.1isinstalled
Jconfigure -static -opensource -release -confirm-license -no-compile-examples -
nomake tests -qt-zlib -qt-libpng -qt-libjpeg -gt-freetype -qt-pcre -qt-harfbuzz -
largefile -gt-xcb -gqt-xkbcommon -prefix /usr -bindir /usr/lib/$TRIPLET/qt5/bin -
libdir /usr/lib/$STRIPLET -headerdir /usr/include/$TRIPLET/qt5 -datadir
lusr/share/qt5 -archdatadir /usr/lib/$TRIPLET/qt5 -plugindir
/usr/lib/$TRIPLET/qt5/plugins -importdir /usr/lib/$TRIPLET/qgt5/imports -
translationdir /usr/share/gt5/translations -hostdatadir /usr/share/qt5 -xplatform
linux-arm-gnueabihf-g++ -platform linux-g++ -sysroot $ROOTFS -hostprefix
lusr/share/qt5 -no-opengl -no-gml-debug -no-sql-sqlite -skip gtdeclarative -skip
gtlocation -skip gtmultimedia -skip gtquickcontrols -skip gtsensors -skip
gtwebchannel -skip gtwebengine -skip wayland -skip xmlpatterns

NOTES:
¢ If we want to be able to have a debug version of the static build, we need to add

the parameter “-debug”.

23) Compile Qt. With parameter “-j N” you can set the number of cores to used (N is the number
of cores). Depending on the processing power and the number of cores, this process may
take several hours to complete.

1. If Qt from git is installed
make -j 4

2. IfQt5.7.1is installed. With Qt 5.7.1, there are some errors building QML libraries,
which gLAB does not need, therefore, these errors can be skipped.

make -j 4 --ignore-errors

24) Install the new version of Qt in the folder specified in the “-prefix” parameter in step 5.
1. If Qtfrom git is installed
make install -j 4

2. IfQt5.7.1is installed. With Qt 5.7.1, there are some errors building QML libraries,
which gLAB doesn’t need, therefore, these errors can be skipped.

make install -j 4 --ignore-errors

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafez (JAGE/UPC) Page 8 of 17

NOTE: If user wants to rerun the “configure” command and build again, it is mandatory to
clean the data folder from previous builds. This can be done with the following commands:
a) If Qtfrom git is installed
1. git submodule foreach --recursive "git clean -dfx" && git clean —dfx
2. Redo step 21
b) If Qt5.7.1is installed. With Qt 5.7.1, there are some errors building QML libraries,
which gLAB does not need, therefore, these errors can be skipped.

make clean -j 4
make distclean -j 4

25) Exit root user (back to normal user in host machine)
exit

26) Open Qt creator (with normal user)

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafez (JAGE/UPC) Page 9 of 17

27) In Qt creator, the new Qt Static version has to be added:

e Go to Tools—Options.

e Inthe left pane, select “Build & Run”.

e Select the “Qt Versions” tab.

o Click in the “Add” button, and search for the “gmake” file, which will be in the “bin” folder
where the static Qt was installed. In this case, it should be in ““/usr/share/qt5/bin" folder.
Set a name for this version (any name is valid). For instance, “Qt 5.7.1 ARM”

e Click in “Apply” in the bottom of the window.

e The result should look like this:
Options

Build & Run

[environment Genera Kits =~ QtVersions = Compilers = Debuggers CMake

E Text Editar Name ~ gmake Location Add...

¥ Auto-detected
X rakevim 7.1 GCC 64bit /files/Qt5.7.1/5.7/gcc_64/bin/qmake Remove
e ~ Manual
® Hep Qt 5.7.1 ARM Jusr/share/qt5/bin/gmake
I Clean Up

4‘ Qt Quick
) Build & Run
¢ Debugger
‘: Designer
[] Analyzer
ion Control
Version name: Qt 5.7.1 ARM A

5

e Pasting gmake location: fusrfshare/gt5/bin/gmake Browse...

No gmlscene installed.

Qt version 5.7.1 for Desktop Details «

Apply Cancel

Ignore the warnings.

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafiez (JAGE/UPC) Page 10 of 17

28) Add the cross-compilers:

Options

D Environment
E Text Editor
w

Qt Quick
i Build & Run

Debugger

Click in the “Compilers” tab.

Click in the “Add->GCC->C” buttons

In the compiler path below, click in “browse” and select the file “/files/linaro/gcc-
linaro-7.3.1-2018.05-x86_64_arm-linux-gnueabihf/bin/arm-linux-gnueabihf-
gcc”

Set the name for the compiler as “GCC x86_64 to ARM”

Click in the “Add->GCC->C++” buttons

In the compiler path below, click in “browse” and select the file “/files/linaro/gcc-
linaro-7.3.1-2018.05-x86_64_arm-linux-gnueabihf/bin/arm-linux-gnueabihf-
g++”

Set the name for the compiler as “G++ x86_64 to ARM”

Click in “Apply” in the bottom of the window.

The result should look like this:

Build & Run

Genera Kits s Compilers = Debuggers CMake

Remaove

'C xB6_64 to ARM
v C++
G++ x86_64 to ARM

Name: G 4 to ARM

Compiler path: 0 18.05-x86_64_arm-linux-gnueabihf/bin/arm-linux-gnueabihf-gcc = Browse...
Platform codegen flags:

Platform linker flags:

ABI: arm-linux ~ | arm * - linux ¥ - generic

Cancel

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafiez (JAGE/UPC) Page 11 of 17

29) Add a new build kit with the static Qt ARM version and the cross compiler:
e Click in the “Kits” tab.
e Click in the “Add” button
e Set a name for the kit (any name). For instance “Qt 5.7.1 Static ARM”
[]

In the compiler section, set “GCC x86_64 to ARM” for C and “G++ x86_64 to
ARM’ for C++

e In the Qt version, select the one created in step 27. For instance, “Qt 5.7.1
ARM”

¢ In the “Sysroot”, and the path “/rootfsarm/root” (the directory were the target
filesystem was installed).

e The result should look like this:
Options

-

Build & Run
D Environment Genera Kits ~ QtVersions Compilers Debuggers CMake

xt Editor Name
~ Auto
sktop Qt 5.7.1 GCC 64bit
¥ Manual
ault)

Make Default

jot 5.7.1 Static ARM =

i Build & Run

Desktop
Debugger 2

v, Local PC (default for Desktop)
Fe Designer

Jfrootfsarm/root Browse...
Analyzer
Compiler:) Manage.
C++: G++ x86_64 to ARM
Ld
Lz Environment: No changes to apply. Change...

ai Code Pasting Debugger None

* Qbs C : Qt5.7.1 ARM Manage.

Apply Cancel

30) Click in “OK” in the bottom part of the window.

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafiez (JAGE/UPC) Page 12 of 17

Manage Kits... Build Settings

Welcome Edit build configuration: Debug = Add -~ Remove Rename..

Import Existing Build...
General

Active Project
i v
aLAB Shadow build:
- Build directory: Browse...

bhig Build & Run

Build Steps
}, 1 Desktop Qt 5.7.1 GCC 64bit

Build
Projects P Run gmake: gmake gLAB.pro -spec linux-g++ CONFIG+=debug CONFIG+=gml|_debug Details

o
o Details =
Project Settings
Add Build Step ~
Editor
Code Style
Dependencies
Clang Static Analyzer

Clean Steps

Details =
Add Clean Step ~

Build Environment

Use System Environment Details *

1 Issues 2 Search Results 3 Application Output 4 Compile Output 5 Debugger Console %

32) The new kit is ready to build, but we need to make sure we select the Release build, as
the Debug build will not be available (unless the “-debug” parameter was provided in step
22. To select the Release build, click in the button with the monitor icon (over the play

and select the Release build for the static Qt kit:

Manage Kits. Build Settings

— Edit build configuration: Release = Add -~ Remove Rename.
Import Existing Build

General

Active Project
R
gLAB Shadow build:
Build directory: ffiles/build-gLAB-Qt 5 7_1 Static ARM-Release Browse...

-

w

Debug

}, & Desktop Qt 5.7.1 GCC 64bit
/ Build
Projects P Run
Cd Qt 5.7.1 Static ARM
e Build Make: make in ffiles/build-gLAB-Qt_5_7_1_Static_ARM-Release Details +

P Run

Build & Run
Build Steps

gmake: gmake gLAB.pro -spec linux-arm-gnueabihf-g++ Details

Add Build Step ~
Project Settings

Editor Clean Steps

Code Style
Dependencies Make: make clean in ffiles/build-gLAB-Qt_5_7_1_Static_ARM-Release Details «
Clang Static Analyzer

Add Clean Step ~

Build Environment

Project: gLAB Use System Environment Details ¥
Deploy: Deploy locally
Run: gLAB

Kit Build
Desktop Qt 5.7.1 GCC 64bit Debug
Qt 5.7.1 Static ARM il

Release

1 Issues 2 Search Results 3 Application Output 4 Compile Output 5 Debugger Console

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafiez (JAGE/UPC) Page 13 of 17

33) Optional: To compile with more than one CPU, click in the “Projects” button, select the
“Build” line of Static ARM Qt Kit, then in the right side, below the “Build Steps” section,
click in the “Details” button of the “Make” line. The line with “Make arguments” will

appear. In this line, write “-j 2” (or substitute 2 by the number of CPUs used).

Manage Kits... 2% Build Settings

Edit build configuration: Release = Add - Remove Rename.
Import g Build

General

Active Project
gLAB Shadow build:
Build directory: /files/build-gLAB-Qt_5_7_1_Static_ARM-Release
Build & Run
Build Steps
I Desktop Qt 5.7.1 GCC 64bit
Id
P Run gmake: gmake gLAB.pro -spec linux-arm-gnueabihf-g++ —

[Qt5.7.1 Static ARM
Build Make: make 2 in ffiles/build-gLAB-Qt_5_7_1_Static ARM-Release Details &

P Run
Project Settings Override nake: Browse..

Edit
c)r|a\ﬂ‘..‘zer Add Build Step ~
Clean Steps

Make: make clean in ffiles/build-gLAB-Qt 5_7_1_Static ARM-Release Details =

gLAB Build Environment

; L Use System Environment Details
Release

>

1 Issues 2 Search Results 3 Application Output 4 Compile Output 5 Debugger C

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafiez (JAGE/UPC) Page 14 of 17

34) Optional: When compiling with a target machine of Ubuntu 14 to 16, the system library
“libjasper” is linked, but it is not available any more in Ubuntu 18. To force this library to
be statically linked, the Makefile created by Qt Creator has to be modified. A new
Makefile will be created to avoid Qt Creator overwriting the modified file.

1. Open aterminal (with the default user)

2. Change to the build directory created by Qt Creator (it is shown in the “Build
directory” in the “Build Settings”, as in images on steps 31,32 and 33). In this example
it is “/files/build-gLAB-Qt 5 7 1 Static ARM-Release”

cd ffiles/build-gLAB-Qt 5 7 1 Static ARM-Release

3. Add the flag for libjasper for forcing to be statically built. To do this, the flag “-ljasper”
has to be replaced for “-WI,-Bstatic -ljasper -WI,-Bdynamic” with the following
command:

sed -e 's/-ljasper/-WI,-Bstatic -ljasper -WI,-Bdynamic/' Makefile > Makefile-static

[T

4. As in step 33, in the “Make arguments”, add at the beginning (prior to the “-j

parameter, if provided) the text “-f Makefile-static”

5. The result should look like this:

- B =
2+ Build Settings
Welcome Edit build configuration: Release Add -~ Remove Rename..

Edit

Import Existing Build...
General

Active Project
gLAB Shadow build: v
T Build directory: /files/build-gLAB-Qt 5_7_1_Static_ARM-Release

Debug

)/

Projects wn gmake: gmake gLAB.pro -spec linux- gnueabihf-g++ Details «

Ol qt 5.7.1 Static ARM __
o Build Make: make -f Makefile-static -j 4 in /ffiles/build-gLAB-Qt 5_7 1 Static ARM-Release Details a

Help P Run

Build & Run
Build Steps

Project Settings Ove make:
-f Makefile-static -j 4
Add Build Step ~
Clean Steps
Make: make clean in ffiles/build-gLAB-Qt_5_7_1_Static ARM-Release Details
Add Clean Step ~

gLAB Build Environment

; G Use System Environment Details *
Release

>

1 Issues 2 Search Results 3 Application Qutput 4 Compile Qutput 5 Debugger Consale

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafiez (JAGE/UPC) Page 15 of 17

35) Compile the application with the “Play” button.

36) To test the that the executable does not have any Qt dependency, go to the folder where
the binary is created (in our case, as we can see in the screenshot above, the binary will
be in the path “/files/build-gLAB-Qt_5_7_1_ Static_ ARM-Release”), execute the following
command:

cd ffiles/build-gLAB-Qt_5_7_1 Static_ ARM-Release
ldd gLAB_GUI | grep —i gt

No output should appear (that is, no Qt library dependencies)

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafez (JAGE/UPC) Page 16 of 17

End of Document

Create Qt Static build in Linux for gLAB GUI.
Written by Deimos Ibafiez (JAGE/UPC) Page 17 of 17

