Tutorial 4

Detailed code measurements modelling

Professors Dr. Jaume Sanz Subirana, Dr. J. M. Juan Zornoza and Dr. Adrià Rovira Garcia

Research group of Astronomy & Geomatics (gAGE) Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

Research group of Astronomy & Geomatics Technical University of Catalonia

Detailed Computation of modeled pseudorange

Using files **UPC11490.050** and **UPC11490.05N** compute the SPP solution.

Afterwards, calculate by hand the modelled C1 pseudo-range and the pre-fit residual for satellite PRN25 at time $\mathbf{t} = 300$ seconds of day 29 May 2005 (Day Of Year 149).

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

Compare the results with gLAB.

NOTE: use the Simple Nominal Model an Mapping for Tropospheric Correction.

Follow next steps:

Process the data files using the default SPP mode:

g gLAB	v5.1.0	-	-	-			_		0.0			2 .	- 0 X
Mode	Temp	olates	Configurati	on Preference	s Help								
	•	SPP	F1										
	1	PPP	F2				a	AR				AGE 9	AGE/UPC
		SBAS	F3	-			9					w	ww.gage.es
	_	DGNSS	F4		Preprocess			Modelling		Filter		Out	put
Rove	er (Use	er)									A Priori Re	ceiver Positio	n From:
RINEX	(Obser	vation F	ile: C:\gLAB		WORK UPC 114	190.050				O	Calculate	RI	NEX
			Start	Time	K	F	nd Time				Specify	SI	NEX
	VIEX FI	le:			- Fr		V ob		tion		1100	050	
Ort	bit an	d Clock	c Source					serva	lion	lile. UPC	11490	.050	
۲	Broado	ast 🔘 I	Precise(1 file)	🔘 Precise (2 file	es)								
RIN	EX Nav	igation F	File: C:\gLAB	WEW_TUT\TUT7	WORK UPC 11	490.05N							
					R								
													1
SB	BAS					RINE	EX Na	avigat	ion f	file: UPC1	1490.	05N	
					L								
- Re	eferen	ice Sta	tion (DGPS	5)									
- Io	nospl	here So	ource										
- Ο Αι	ıxiliar	y Files											
Devel	oped b	oy gAGE	E: Research	group of Astron	nomy & Geor	natics		Curre	nt Templa	te: SPP	ſ	Run gLAB	Show Output

gLAB v5.1.0		A 11.24	
<u>M</u> ode <u>T</u> emplates <u>C</u> onfiguration <u>P</u> references <u>H</u> elp			
- COSA	alAR		gAGE gAGE/UPC
Cood	YLAD		www.gage.es
Input Preprocess	M <u>o</u> delling	<u>F</u> ilter	O <u>u</u> tput
Modelling Options			
Satellite Clock Offset Correction			
Check Broadcast Transmission Time			
Consider Satellite Movement During Signal Flight Time			
Consider Earth Rotation During Signal Flight Time			
Satellite Mass Centre to Antenna Phase Centre Offset Correction			
Receiver Antenna Phase Centre Correction			
Receiver Antenna Reference Point Correction			
Relativistic Clock Correction (orbit eccentricity)			
✓ Ionospheric Correction Klobuchar (GPS) ▼			
✓ Tropospheric Correction Simple Nominal ▼ Simple Mapping ▼	Select "Simple N	ominal" for	
✓ P1 - P2 Correction RINEX Nav File ▼	Tropospheric Cor	rection	
✓ P1 - C1 Correction			
Wind up Correction (carrier phase only)			
Solid Tides Correction			
Relativistic Path Range Correction			
Developed by gAGE: Research group of Astronomy & Geomatics	Current Templa	te: SPP	Run gLAB Show Output

gLAB v5.1.0			1.1.1.1. ·····	
<u>Mode Templates</u> Configuration	n <u>P</u> references <u>H</u> elp			
•eesa		qLAB	A Destant	gAGE gAGE/UPC
Input	Preprocess	Modelling	Filter	Output
Output Destination	T_cprocess	Houting	Licei	0 <u>0</u> 000
	I (I UI 7 (WORK (gLAB.out			W
KML File:				
KML0 File:				
SP3 File:				
Common Navigation Message	25			
All	None			
Print INFO Print PF	REFIT			
📝 Print CS (Cycle-slip) 📝 Print PC	OSTFIT			
Print INPUT	ATSEL Det	ault Output files		
Print MEAS Print FI		figure tion		
Print EPOCHSAT Print US	SERADDEDERROR	inguration		
Developed by gAGE: Research gr	oup of Astronomy & Geomatics	Current Templa	ite: SPP	Run gLAB Show Output

- 0. Select pseudorange C1 for PRN25, at t=300 seconds.
- 1. Select orbital elements closest to t=300 seconds
- 2. Compute satellite clock offset
- 3. Compute satellite instrumental delay (TGD)
- 4. Compute satellite-receiver aprox. geometric range:
 3.1 Compute emission time from receiver (reception) time-tags and code pseudorange.
 - 3.2 Compute satellite coordinates at emission time
 - 3.3 Compute approximate geometric range.
- 5. Compute relativistic satellite clock correction
- 6. Compute ionospheric delay
- 7. Compute tropospheric delay
- 8. Compute modeled pseudorange from previous values:

 $C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$

0. Select pseudorange C1 for PRN25, at t=300 seconds.

t = 300 sec= 0h 05m 0.000000s	RINEX meas. file UPC11490.050
E Jaume@Portatil_Jaume:/cygdrive/c/g	LAB/win/Professional_training/WO 🗖 🗙
05 5 29 0 5 0.0000000 0 8625609	606601602605630614
22857303.996 22857301.3054 12011	5969.49948 93596862.76546 2723.29048
24466601.337 24466601.6684 12857	2940.94147 100186651.00844 -3729.38047
-2905.98944 20405995.011 20405993.9894 10723	4297.78349 83559175.41846 1058.26649
824.62446 22758443.914 22758442.9824 11959	6458.09448 93192027.40946 221.51848
172.61946 22847797.979 22847793.9524 12006	6006.91748 93557939.31646 -597.92448
-465.90346 22038213.121 22038210.8494 11581	1711.44948 90242946.64646 -2309.52148
-1799.62646 20171035.530 20171033.5794 10599	9650.93349 82597114.84546 -377.07249
-293.81446 22567004 856 22567003 4674 11859	0435 21148 92408144 24746 _2193 61648
22841780.362 22841777.9824 12003	4393.69248 93533297.24445 2715.16248
24487903.545 24487901.6274 12868	4880.96348 100273876.88342 -3732.94148

Jaume@Jaume-PC:/cygdrive/c/gLAB/win/GNSS_TUTBOOK_MASTER/WORK/TUT4

laume@Jaume-PC:/cygdrive/c/gLAB/win/GNSS_TUTBOOK_MASTER/WORK/TUT4 laume@Jaume-PC:/cygdrive/c/gLAB/win/GNSS_TUTBOOK_MASTER/WORK/TUT4 head -190 UPC11490.050

х

۰

÷

0. Select pseudorange C1 for PRN25, at t=300 seconds.

From RINEX measurement file **UPC11490.050**, select the *C1* pseudorange measurement at receiver time-tag for PRN25:

t = 300 sec:	= Oh 05m 0.0	000000s		
from file	UPC11490.050, C1	L = 22857303.996	m at $t = 300 \text{s}$.	
5 5 29 0 5	0.0000000 0	G <mark>25</mark> G 9G 6G 1G21	G 2G 5G30G14	
22857303.996	22857301.3054	120115969.4994	8 93596862.76546	2723.29048
2122.09146				
24466601.337	24466601.6684	128572940.9414	7 100186651.00844	-3729.38047
-2905.98944				
20405995.011	20405993.9894	107234297.7834	9 83559175.41846	1058.26649
824.62446				
22758443.914	22758442.9824	119596458.0944	8 93192027.40946	221.51848
172.61946				

Thence:

1. Selection of orbital elements:

For **PRN25**, select from file **UPC11490.05N** the last transmitted navigation message, before **t** = **300** seconds of DoY 149 of year 2005.

These data were transmitted by PRN25 at second 18 of GPS week 1325 (i.e. 1.8000000000E+01, 1.32500000000E+03 in the message).

The associated Y Y:MM:DD:hh:mm:ss with this transmission time can be computed using the **GNSS Date Converter** tool of **gLAB** as follows:

2. Satellite clock offset computation:

From file **UPC11490.05N**, compute satellite clock offset at time **t=300 s** for **PRN25**:

t = 300sec

 t_0 = 2h Om Os= 7200 s

$$d\overline{t}^{sat} = a_0 + a_1(t - t_0) + a_2(t - t_0)^2 = 9.400 \cdot 10^{-5} s$$

$$C1_{rec}^{sat}[modelled] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

Satellite clock offset computation with MATLAB (octave)

$$t = 300sec$$
 $t_0 = 2 h \ 0 \min \ 0 s = 7200 s,$

 $a_0 = 9.401096031070E-05 a_1 = 9.094947017729E-13$,

 $a_2 = 0.0000000000E+00$ (use also c = 299792458 m/s).

$$d\overline{t}^{sat} = a_0 + a_1(t - t_0) + a_2(t - t_0)^2 = 9.400 \cdot 10^{-5} s$$

Cross-checking results with gLAB

$$d\overline{t}^{sat} = 9.400\,468\,48\cdot10^{-5}\,\mathrm{s} \implies -c\,d\overline{t}^{sat} = -28\,181.895\,51\mathrm{m}.$$

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

.

3. Satellite Instrumental delay (TGD)

From file **UPC11490.05N**, compute the Total Group Delay for **PRN25**:

TGD= -7.450580596924E-09 * c= -2.23363m

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

TGD =
$$-7.450580596924E-09$$
 (in seconds)
Thus: TGD = $-7.450580596924E - 09 \times c = -2.23363$ m

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

4. Satellite-receiver geometric range computation:

Use the following values (4789032.6277, 176595.0498, 4195013.2503) as approximate coordinates.

4.1: Emission time computation from receiver time-tag and code

pseudorange:

 $T[ems] = t_{rec}(T_R) - (C1/c + dt^{sat})$

Thence, the emission time in GPS satellite clock is:

 $T[ems] = 300s - (22857303.996m / c + 9.40 \ 10^{-5}s)$ $= 299.923662236054s \ (where c = 299792458 \ m/s)$

E Jaume@Jaume-PC:/cy	/gdrive/c/gLAB/N	IEW_TUT/T	UT7/WORK	-		- 🗆 🗙
2.10 B2AConv V2.0 BIT 2 OF LLI (+4) FM UPC1	OBSERVATION gAGE/UPC LAGS DATA COL	DATA	GPS/GEO 21-Dec-09 NDER "AS"	19:17 CONDITION	RINEX VERS PGM / RUN COMMENT MARKER NAM	SION / TYPE BY / DATE ME
gAGE / UPC 1 1	gAGE / UPC NOVATEL MIL NOVATEL PINW	LENIUM (OEM-3		OBSERVER / REC # / TY ANT # / TY	AGENCY PE / VERS
4789032.6277 17	6595.0498 41	95013.25	03		APPROX POS	SITION XYZ
0.0000	0.0000	0.00	00		ANTENNA: L	DELTA H/E/N
	14 15	D1	00		WAVELENGTH	FACT L1/2
SNR is manned to sid	LL LZ	[0_0]	02	_	# / LIPES	UF UBSERV
11 SNR: \$44 \$35	$\sim 26 \sim 17$	S	> 0			$Z_{0,roc}$
sia: 9 8	7 6	5	4	v 0,1	et / / 0,ret,	0,120
L2 SNR: >50 >42	>34 >26	>18	>8 >0	n/a	COMMENT	
sig: 9 8	7 6	5	4 3	0	COMMENT	
1					INTERVAL	
2005 5 29	0 0	1.0000	00		TIME OF FI	IRST OBS
2005 5 29	23 59	58.0000	00		TIME OF LA	AST OBS ADER
5 5 29 0 0 1.0	0000000 0 9	G25G 9G (6G 1G21G 2	2G 5G30G14		
23014409.454 2	3014407.0624	1209415	60.43748	94240180.1	L2946	2797.89748
2180.13646						
24255343.500 24	4255342.1054	1274627	72.33948	99321651.1	L7545 -	-3695.18948
20470437.022 20	0470435.1684	1075729	39.39549	83823051.7	74446	1206.77349
940.33646 22776509.627 23	2776510.7274	1196913	95.32948	93266004.4	45346 1,6	413.23948 Top

Approximate Receiver coordinates given in the RINEX file header

 $x_{0,rec} = 4789032.6277$ $y_{0,rec} = 176595.0498$ $z_{0,rec} = 4195013.2503$

Measurement file UPC11490.050

t = 300 sec = 0h 05m 0.000000s

🔄 Jaume@Portatil_Jaume:/cygdrive/c/gLAB/win/Professional_training/WO... 💻 🗖

05 5 2	9 0 5	0.0000000	0	G25 09G06G01G02	G05G30G14		\sim
228573	03.996	22857301	.3054	120115969.4994	8 93596862.76546	2723.29048	
21	22.0914	6					
244666	01.337	24466601	.6684	128572940.9414	7 100186651.00844	-3729.38047	
-29	05.9894	4		407034007 7034		4050 00040	
204059	95.011	20405993	.9894	10/23429/./834	9 835591/5.41846	1058.26649	
0	24.0244	0	0024	110506459 0044	0 00100007 40046	221 51040	
227004	43.914 77 6104	6	.9024	119390430.0944	0 93192027.40940	221.01040	
228477	07 070	22847793	9524	120066006 9174	8 93557939 31646	-597 92448	
-4	65,9034	6		12000000.01/4	0 0000000000000000000000000000000000000	337132440	
220382	13.121	22038210	.8494	115811711.4494	8 90242946.64646	-2309.52148	
-17	99.6264	6					
201710	35.530	20171033	.5794	105999650.9334	9 82597114.84546	-377.07249	
-2	93.8144	6					
225670	04.856	22567003	.4674	118590435.2114	8 92408144.24746	-2193.61648	
-17	09.3034	6	-				
05 5 2	9 0 5	30.0000000	0	8G25G09G06G01G02	G05G30G14		
228417	80.362	22841777	.9824	120034393.6924	8 93533297.24445	2715.16248	
21	15./184	5	6374	120004000 0024	0 100070076 00040	2722 04140	
244879	03.545	24487901	.0274	128084880.9634	8 1002/38/6.88342	-3/32.94148	1.4
							- V

×

Note:

From RINEX measurement file **UPC11490.050**, select the *C1* pseudorange measurement at receiver time-tag for PRN25:

Thence:

Measurement file UPC11490.050 Pseudorange *C1* at receiver time-tag t=300: *C1*= 22857303.996 m

$$T[ems] = t_{rec}(T_R) - (C1/c + dt^{sat})$$

Thence, the emission time in GPS satellite clock is:

T[ems]= 300s - (22857303.996m /*c* + 9.40 10⁻⁵s)

= 299.923662236054s (where *c*=299792458)

E gAGE@gAGE-PC:/cygdrive
octave:1> format long octave:2> c=299792458
c = 299792458
sec = 300
octave:4> dt_sat0= 9.40046848e-05
octave:5> C1=22857303.996
C1 = 22857303.9960000 octave:6> sec ems=sec-C1/c-dt_sat0
<pre>sec_ems = 299.923662236054</pre>
octave:/>

Emission time computation with MATLAB (octave)

4.2: Satellite coordinates at emission time pseudorange:

The obtained coordinates are given in an Earth-fixed reference frame (CTS) at *t=T[emission]=* 299.92366 s.

This reference frame rotates by un amount " $\omega_E \Delta t$ " during traveling time $\Delta t = T[reception] - T[emission]$.

 $(x^{sat}, y^{sat}, z^{sat})_{CTS[reception]} = R_3(\omega_E \Delta t).(x^{sat}, y^{sat}, z^{sat})_{CTS[emission]}$

 $GPSxyz \longrightarrow (x,y,z)_{[CTS]}$

Conventional Terrestrial Reference System (CTS):

Earth Centered, Earth-Fixed (ECEF) → **the reference system rotates with Earth**.

BACKUP SLIDE

Greenwich

(x,y,z)

Computation of satellite coordinates from navigation message (GPSxyz.f)

Computation of t_k time since ephemerids reference epoch t_{oe} (t and t_{oe} are given in GPS seconds of week):

$$t_k = t - t_{oe}$$

• Computation of mean anomaly M_k for t_k ,

$$M_{k} = M_{0} + \left(\frac{\sqrt{\mu}}{\sqrt{a^{3}}} + \Delta n\right) t_{k}$$

• Iterative resolution of Kepler's equation in order to compute eccentric anomaly E_k :

$$M_k = E_k - e\sin E_k$$

• Calculation of true anomaly v_k :

$$v_k = \arctan\left(\frac{\sqrt{1-e^2}\sin E_k}{\cos E_k - e}\right)$$

 Computation of latitude argument u_k from perigee argument W, true anomaly v_k and corrections c_{uc} and c_{us}:

$$u_{k} = \omega + v_{k} + c_{uc} \cos 2(\omega + v_{k}) + c_{us} \sin 2(\omega + v_{k})$$

©gAGE/UPC

BACKUP SLIDE

Computation of satellite coordinates from navigation message (GPSxyz.f)

• Computation of radial distance r_k , taking into consideration corrections c_{rc} and c_{rs} :

$$r_{k} = a\left(1 - 2\cos E_{k}\right) + c_{rc}\cos 2\left(\omega + v_{k}\right) + c_{rs}\sin 2\left(\omega + v_{k}\right)$$

Calculation of orbital plane inclination *i_k* from inclination *i_o* at reference epoch *t_{oe}* and corrections *c_{ic}* and *c_{is}* :

$$i_{k} = i_{0} + it_{k} + c_{ic} \cos 2(\omega + v_{k}) + c_{is} \sin 2(\omega + v_{k})$$

• Computation of ascending node longitude Ω_k (Greenwich), from longitude Ω_0 at start of GPS week, corrected from apparent variation of sidereal time at Greenwich between start of week and and reference time $t_k=t-t_{oe}$, and also corrected from change of ascending node longitude since reference epoch t_{oe} .

$$\Omega_{k} = \Omega_{0} + (\Omega - \omega_{E})t_{k} - \omega_{E}t_{oe}$$

• Calculation of coordinates in CTS system, applying three rotations (around $u_{k'}$ $i_{k'}$ Ω_k) :

$$\begin{bmatrix} \mathbf{X}_k \\ \mathbf{Y}_k \\ \mathbf{Z}_k \end{bmatrix} = \mathbf{R}_3(-\mathbf{\Omega}_k)\mathbf{R}_1(-i_k)\mathbf{R}_3(-u_k)\begin{bmatrix} r_k \\ 0 \\ 0 \end{bmatrix}$$

©gAGE/UPC BACKUP SLIDE

Computation of satellite coordinates in an Earth-Fixed reference frame (CTS) at *t=T[emission]=* 299.92366 s.

echo "2005 149 299.92366224" > time.dat
cat time.dat eph.dat | GPSxyz

Note: use the file "eph.dat" (with the selected Nav. Message)

x= 6 364 868.618 m
y= -14 298 233.062 m
z= 21851 197.941 m
CTS [emission]

х

SAGE@gAGE-PC:/cygdrive/c/gLAB/NEW_TUT/TUT7/WORK

AGE@gAGE-PC:/cygdrive/c/gLAB/NEW_TUT/TUT7/WORK echo "2005 149 299.92366224" > time.dat AGE@gAGE-PC:/cygdrive/c/gLAB/NEW_TUT/TUT7/WORK cat time.dat eph.dat | GPSxyz 25. 299.92366224 6364868.618075 -14298233.062153 21851197.940638 3.022976 AGE@gAGE-PC:/cygdrive/c/gLAB/NEW_TUT/TUT7/WORK

These coordinates are given in an t=T[emission]= 299.92366 s, i.e CTS [emission]

Next step is to transform these coordinates to CTS [reception]

 $(x^{sat}, y^{sat}, z^{sat})_{CTS[reception]} = R_3(\omega_E \Delta t).(x^{sat}, y^{sat}, z^{sat})_{CTS[emission]}$

 $(x^{sat}, y^{sat}, z^{sat})_{\text{CTS[reception]}} = R_3(\omega_E \Delta t).(x^{sat}, y^{sat}, z^{sat})_{\text{CTS[emission]}}$

$$\begin{pmatrix} 6364789.025 \\ -14298268.493 \\ 21851197.941 \end{pmatrix}_{CTS[reception]} = \begin{pmatrix} \cos(\omega_E \Delta t) & \sin(\omega_E \Delta t) & 0 \\ -\sin(\omega_E \Delta t) & \cos(\omega_E \Delta t) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 6 & 364 & 868.618 \\ -14 & 298 & 233.062 \\ 21851 & 197.941 \\ CTS[emission] \end{pmatrix}$$

$$(x, y, z)^{satellite} \approx (6364868.618, -14298233.062, 21851197.940)$$

$$(x_{0}, y_{0}, z_{0})_{receiver} \approx (4789032.628, 176595.050, 4195013.250)$$

$$\rho_{0,rec}^{sat} = \sqrt{\left(x^{sat} - x_{0,rec}\right)^{2} + \left(y^{sat} - y_{0,rec}\right)^{2} + \left(z^{sat} - z_{0,rec}\right)^{2}} \approx 22885470.626m$$

$$\Delta t = \frac{\rho_{0,rec}^{sat}}{c} = 0.0763 \sec \omega_{E} = 7.2921151467 \cdot 10^{-5} rad / \sec \omega_{E}$$

An approximate value is enough to compute Δt .

Note: Both satellite and receiver coordinates must be given in the same reference system!

©gAGE → the CTS[reception] will be used to build navigation equations.

27

Transformation of satellite coordinates form CTS [emission] to CTS [reception] with MATLAB (octave)

4.3: Geometric range computation

The geometric range between satellite coordinates at emission time and the "approximate position of the receiver" at reception time both coordinates given in the same reference system [for instance the CTS system at reception time]) is computed by:

$$\rho_{0,rec}^{sat} = \sqrt{\left(x^{sat} - x_{0,rec}\right)^{2} + \left(y^{sat} - y_{0,rec}\right)^{2} + \left(z^{sat} - z_{0,rec}\right)^{2}} \approx 22885487.555m$$

$$(x, y, z)^{satellite} = (6364789.0249 - 14298268.4928 \ 21851197.9406)_{CTS[reception]}$$

$$(x_{0}, y_{0}, z_{0})_{receiver} = (4789032.6277 \ 176595.0498 \ 4195013.2503)_{CTS[reception]}$$

$$(x_{0}, y_{0}, z_{0})_{receiver} = (4789032.6277 \ receiver \ coordinates \ at reception \ time.$$

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

29

Technical University of Catalonia

©gAGE/UPC

Geometric range computation with octave (MATLAB)

 $r0_rcv=[4789032.6277]$ 176595.04984195013.250] from RINEX header $r_sat_ems=[6364789.0249]$ -14298268.492821851197.9406] CTS [reception]

from previous computations

Cross-checking results with gLAB

GAGE@gAGE-PC:/cygdrive/c/gLAB/NEW_TUT/TUT7/WORK gAGE@gAGE-PC:/cygdrive/c/gLAB/NEW_TUT/TUT7/WORK grep MODEL gLAB.out | grep -v INFO | gawk '{if (\$6==25) print \$4,\$6,\$17}' |head -1 300.00 25 22885487.5548 gAGE@gAGE-PC:/cygdrive/c/gLAB/NEW_TUT/TUT7/WORK |

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

5. Relativistic clock correction:

T[emission] = 299.92366224 s → GPSxyz → E = 3.022976 rad. (eccentric anomaly)

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

Relativistic clock correction computation with MATLAB (octave)

Cross-checking results with gLAB

```
grep MODEL gLAB.out | grep -v INFO |
gawk '{if ($6==25) print $4,$6,$22}' |head -1
```

GAGE@gAGE-PC:/cygdrive/c/gLAB/NEW_TUT/TUT7/WORK
GAGE@gAGE-PC:/cygdrive/c/gLAB/NEW_TUT/TUT7/WORK grep MODEL gLAB.out | grep -v INFO | gawk '{if (\$6==25) print \$4,\$6,\$22}' |head -1
300.00 25 0.98343
gAGE@gAGE-PC:/cygdrive/c/gLAB/NEW_TUT/TUT7/WORK |

Note: gLAB computes this relativistic correction using a different algorithm: **dt_rel= -2*r_sat_ems*v'/c/c** (see GNSS book). Where the velocity is estimated from coordinates variation from two close epochs. This is the reason of the small discrepancy.

6. Ionospheric correction

$$t = 300 \sec(x, y, z)^{satellite} = (6364789.0249 - 14298268.4928 \ 21851197.9406)_{CTS[reception]}$$
$$(x_0, y_0, z_0)_{receiver} = (4789032.6277 \ 176595.0498 \ 4195013.2503)_{CTS[reception]}$$

Approximate values for receiver or satellite coordinates are enough

$$C1_{rec}^{sat}[modelled] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

6. Ionospheric correction

File iono.dat contents the measurement time and the receiver and satellite PRN25 coordinates:

300 4789032.6277 176595.0498 4195013.2503 <- rec. coord 6364789.0249 -14298268.4928 21851197.9406 <- sat. coord 1.0245E-08 2.2352E-08 -5.9605E-08 -1.1921E-07 <- ALPHAS 9.6256E+04 1.3107E+05 -6.5536E+04 -5.8982E+05 <- BETAS</pre>

The FORTRAN program iono.f implements the Klobuchar ionospheric model selected by default in gLAB.

Note: the algorithms are given in the GNSS book, Volume-1.

The Fortran code iono.f and C code Model.c are available in the CD-ROM, Volume -2

34

search group of Astronomy & Geomatic Technical University of Catalonia

©gAGE/UPC

©gAGE/UPC

Research group of Astronomy & Geomatics Technical University of Catalonia

BACKUP SLIDE

©gAGE/UPC

Cross-checking results with gLAB

grep MODEL gLAB.out | grep -v INFO |
 gawk '{if (\$6==25) print \$4,\$6,\$25}' |head -1

cat iono.dat | iono

Solution:

 $I_1 = 2.47264 \,\mathrm{m}$ of L1 delay.

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

7. Tropospheric correction

$$Trop_{rec}^{sat} = (d_{dry} + d_{wet})m(elev) = 4.319m$$

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

©gAGE/UPC

©gAGE/UPC

Satellite Elevation and Azimuth computation

The unit vectors in the local east, north and up directions as expressed in ECEF Cartesian coordinates are given by

$$\hat{\mathbf{e}} = (-\sin\lambda, \cos\lambda, 0)$$
$$\hat{\mathbf{n}} = (-\cos\lambda\sin\varphi, -\sin\lambda\sin\varphi, \cos\varphi)$$
$$\hat{\mathbf{u}} = (\cos\lambda\cos\varphi, \sin\lambda\,\cos\varphi, \sin\gamma)$$

$$\hat{\boldsymbol{\rho}} = \frac{\mathbf{r}^{sat} - \mathbf{r}_{rcv}}{\|\mathbf{r}^{sat} - \mathbf{r}_{rcv}\|}$$

$$\hat{\mathbf{p}} \cdot \hat{\mathbf{e}} = \cos E \sin A$$

$$E = \arcsin(\hat{\boldsymbol{\rho}} \cdot \hat{\mathbf{u}})$$

$$\hat{\mathbf{p}} \cdot \hat{\mathbf{n}} = \cos E \cos A$$

$$A = \arctan\left(\frac{\hat{\boldsymbol{\rho}} \cdot \hat{\mathbf{e}}}{\hat{\boldsymbol{\rho}} \cdot \hat{\mathbf{n}}}\right)$$

Computation of satellite elevation

```
# Using Octave or MATLAB compute:
octave
 format long
 1=2.1118187082
 f= 41.3886630584
 l=l*pi/180
 f=f*pi/180
 u=[cos(1)*cos(f);sin(1)*cos(f);sin(f)]
    r0_rcv=[4789032.6277 176595.0498 4195013.250]
  r_sat_ems=[6364789.0249 -14298268.4928 21851197.9406]
 rho=r_sat_ems-r0_rcv
  rho=rho/norm(rho)
 elev=asin(rho*u)
 # ==> elev=0.57546444394506 (rad)
```


Computation of Tropospheric delay

```
# Using Octave or MATLAB compute:
octave
 format long
 H=166.4544
 elev=0.575464444394506
 dry=2.3*exp(-0.116e-3*H)
 wet=0.1
 m=1.001/sqrt(0.002001+sin(elev)**2)
 Tropo=(dry+wet)*m
 # ==> Tropo= 4.31889 (metres)
 exit
```


grep MODEL gLAB.out | grep -v INFO | gawk '{if (\$6==25) print \$4,\$6,\$24}' |head -1

$$C1_{rec}^{sat}[modelled] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

8. Compute the modeled pseudorange

$$C1_{rec}^{sat}[modelled] = \rho_{rec,0}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

 $\rho_{0,rec}^{sat} = 22885487.554 \text{ m}$ $d\overline{t}^{sat} = 9.400 \cdot 10^{-5} c = 28181.896 \text{ m}$ $c \Delta rel^{sat} = -3.28 \cdot 10^{-9} c = -0.0983 \text{ m}$ $Trop_{rec}^{sat} = 4.319 \text{ m}$ $Ion_{1rec}^{sat} = 2.473 \text{ m}$ $TGD^{sat} = -2.234 \text{ m}$

9. Pre-fit residual:

Is the difference between measured and modeled pseudorange

Thank you

References

- [RD-1] J. Sanz Subirana, J.M. Juan Zornoza, M. Hernández-Pajares, GNSS Data processing. Volume 1: Fundamentals and Algorithms. ESA TM-23/1. ESA Communications, 2013.
- [RD-2] J. Sanz Subirana, J.M. Juan Zornoza, M. Hernández-Pajares, GNSS Data processing. Volume 2: Laboratory Exercises. ESA TM-23/2. ESA Communications, 2013.
- [RD-3] Pratap Misra, Per Enge. Global Positioning System. Signals, Measurements, and Performance. Ganga –Jamuna Press, 2004.
- [RD-4] B. Hofmann-Wellenhof et al. GPS, Theory and Practice. Springer-Verlag. Wien, New York, 1994.

Acknowledgements

- The ESA/UPC GNSS-Lab Tool suit (gLAB) has been developed under the ESA Education Office contract N. P1081434.
- The data set of GRACE-A LEO satellite was obtained from the NASA Physical Oceanography Distributed Active Archive Center at the Jet Propulsion Laboratory, California Institute of Technology.
- The other data files used in this study were acquired as part of NASA's Earth Science Data Systems and archived and distributed by the Crustal Dynamics Data Information System (CDDIS).
- To Pere Ramos-Bosch for his fully and generous disposition to perform gLAB updates in his afterhours.
- To Adrià Rovira-Garcia for his contribution to the edition of this material and gLAB updating.
- To Deimos Ibáñez for his contribution to gLAB updating and making the Windows installable version for this tutorial.

