Lecture 1 Introduction to GNSS

Professors: Dr. J. Sanz Subirana, Dr. J.M. Juan Zornoza and Dr. A. Rovira-García

Contents

- An intuitive approach to GNSS positioning
 How GNSS Works
- 3. Additional Comments.

gAGE

1.- An intuitive approach to GNSS positioning

With a single lighthouse, possible solutions lie on a circle of radius p

 With two lighthouses
 the possible solutions are reduced to two

Suppose that a lighthouse is emitting acoustic signals at regular intervals of 10 minutes and intense enough to be heard some kilometres away.

Assume that a ship with a clock perfectly synchronised to the one in the lighthouse is receiving these signals in a time that is not an exact multiple of 10 minutes, for example 20 seconds later (t = n*10m + 20s)

www.gage.upc.edu

© J. Sanz & J.M. Juan

With a single lighthouse, possible solutions lie on a circle of radius p

 With two lighthouses
 the possible solutions are reduced to two

F₁

Suppose that a lighthouse is emitting acoustic signals at regular intervals of 10 minutes and intense enough to be heard some kilometres away. gAGE/UPC research group of Astronomy and Geomatics Barcelona TECH,

gAGE

With a single lighthouse, possible solutions lie on a circle of radius p

With two lighthouses the possible solutions are reduced to two

gAGE/UPC research group of Astronomy and Geomatics BarcelonaTE

2.- How GNSS Works

Thence, the receiver coordinates are found **solving a geometrical problem**: from satellite coordinates and ranges

QAGE/UPC research group of Astronomy and Geomatics

One of the solutions is not on the Earth surface.

With a single lighthouse, possible solutions lie on a circle of radius p

 With two lighthouses
 the possible solutions are reduced to two

F₁

Suppose that a lighthouse is emitting acoustic signals at regular intervals of 10 minutes and intense enough to be heard some kilometres away.

Satellite location

Satellite coordinates and clock offsets are computed from navigation message.

gAGE/UPC research group of Astronomy and Geomatics

gAGE/UPC research group of Astronomy and Geomatics BarcelonaTE

gAGE

www.gage.upc.edu

© J. Sanz & J.M. Juan

Satellite location

Satellite coordinates and clock offsets are computed from navigation message.

Measurements: Pseudo-ranges

GHHP

"Pseudoranges" are computed by measuring the **traveling time** from satellite to receiver

Several error sources affect these measurements.

MODEL:

Atmospheric propagation, relativistic effects, clocks and instrumental delays are modeled and removed.

And navigation equations are built.

The geometric problem

Navigation equations

is linearized, and Weighted Least Squares or Kalman filter are used to compute the navigation solution.

www.gage.upc.edu

gAGE/UPC research group of Astronomy and Geomatics

3.- Additional Comments

Code Pseudorange Modelling:

Navigation accuracy depends of precise modelling and measurements used (code, carrier).

 $C1_{rec}^{sat}[modelled] = \rho_{rec,0}^{sat} - c\left(d\tilde{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$

Navigation Solution

Navigation Equations solution:

- The geometrical problem linearised about an approximate receiver coordinates (x0, y0, z0).
- Least Squares or Kalman • filter are used to solve the navigation equations.

www.gage.upc.edu

References

[RD-1] J. Sanz Subirana, J.M. Juan Zornoza, M. Hernández-Pajares, GNSS Data processing. Volume 1: Fundamentals and Algorithms. ESA TM-23/1. ESA Communications, 2013.

- [RD-2] J. Sanz Subirana, J.M. Juan Zornoza, M. Hernández-Pajares, GNSS Data processing. Volume 2: Laboratory Exercises. ESA TM-23/2. ESA Communications, 2013.
- [RD-3] Pratap Misra, Per Enge. Global Positioning System. Signals, Measurements, and Performance. Ganga-Jamuna Press, 2004.

[RD-4] B. Hofmann-Wellenhof et al. GPS, Theory and Practice. Springer-Verlag. Wien, New York, 1994.

gAGE

Thank you!