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Abstract: Unmodeled errors play a critical role in improving the positioning accuracy of Global
Navigation Satellite Systems. Few studies have addressed unmodeled errors in medium and long
baselines using their time correlation, which is highly beneficial for achieving a precise and real-time
solution. However, before tackling unmodeled errors, it is first necessary to determine reasonable
basic functions to fit such unmodeled errors. Therefore, we study the selection of basic functions
for time-varying unmodeled errors in two positioning modes: estimating atmospheric delays and
using an IF combination. We choose three basic functions: polynomials, sinusoidal functions, and
combinatorial functions. Fitting experiments and positioning experiments are conducted using the
unmodeled error data provided by four baselines ranging from 30 to 220 km. The Root Mean Square
Errors fitted by the second order are approximately 2 mm. The corresponding residuals generally
converge to 3 mm in about 30 s. After correcting the observations using the fitted unmodeled errors
of the second-order polynomial, the positioning results show improvements of about 40% to 80% in
all directions. We conclude that the second-order polynomial is the optimal basic function in all two
positioning modes.

Keywords: GNSS; unmodeled error; real-time kinematic (RTK); Kalman filter

1. Introduction

The positioning accuracy of a Global Navigation Satellite System (GNSS) is affected by
a variety of systematic errors in its observations [1], causing the processing of systematic
errors to be a research hotspot. Although systematic GNSS errors have received consid-
erable critical attention, no definitive method or model can eliminate these errors due to
their complex spatiotemporal characteristics [1]. Consequently, some of these errors remain
unmodeled. These often-overlooked errors are called unmodeled errors [2] and remain
some of the most significant challenges for improving positioning accuracy.

Current research on the processing of unmodeled errors in relative positioning can
be broadly divided into two categories [3]. The first category studies specific types of
errors, modeling them and correcting them more precisely to reduce the unmodeled
errors remaining in the observation equations. Among such studies, the ionospheric
delay, tropospheric delay, and multipath effect are the main objects of study. For the
ionospheric delay, the processing method is selected according to the number of frequencies.
Correction models can be adopted in single-frequency observations, for instance, the
Klobuchar model [4], NeQuick model [5], and the BDGIM [6]. In the case of multi-frequency
observations, the effects of ionospheric delay can be significantly mitigated via a linear
combination of observations [7]. For tropospheric delay, its effect in each elevation angle
direction is usually expressed as the product of the zenith delay and the mapping function.
In terms of the zenith delay, models can be basically divided into two groups, geodetic-
oriented models or navigation-oriented models, according to application. The first group
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is the most accurate but requires surface meteorological data, such as the Hopfield [8],
Saastamoinen [9], and GPT2 [10] models. The second group of models do not need surface
meteorological data but are less accurate, such as the TropGrid2 [11] and ITG [12] models.
Regarding the mapping functions, Marini [13] derived an expression based on a continued
fraction, and subsequently, many mapping functions have a similar form but different
parameter values [14]. As for the multipath effect, it can be mitigated by placing the receiver
away from reflecting objects [15] or by installing a choke ring for the antenna [16]. In
addition, the multipath effect can also be mitigated from the perspective of data processing,
such as the sidereal filtering method [17] and the hemispherical model [18]. However,
despite many studies focused on correcting a single error, unmodeled errors, such as the
higher-order component of the ionospheric delay [19] and the wet delay component of the
tropospheric delay [20,21], are still not negligible, thus limiting the accuracy of positioning.

The second category of processing unmodeled errors in relative positioning is to
study all systematic errors remaining in an observation equation, that is, to address the
unmodeled errors as a whole [3]. In that sense, a common approach is to treat them by
including them in either a stochastic model or a functional model. Li et al. [22] proposed a
procedure to test the significance of unmodeled errors and suggested means of processing
each type of unmodeled error. If the unmodeled errors are insignificant, they are included
in the stochastic model. Zhang et al. [23] proposed a method to dynamically determine the
stochastic model using the satellite elevation angle and the carrier-to-noise power density
ratio. Yuan et al. [24] considered the influence of unmodeled errors and conducted a sys-
tematic study on stochastic models of low-cost receivers and smartphones. For standalone
receivers, Zhang et al. [25] proposed an unmodeled-error-corrected stochastic assessment
regardless of the number of tracked frequencies. In contrast, when the unmodeled errors
are significant, they need to be included in the functional model. Zhang and Li [20] pro-
posed a method based on multi-epoch partial parameterization to mitigate the unmodeled
errors and verified its performance using six baselines from 4.82 km to 24.22 km. This
method estimates the unmodeled error inside a moving window as a constant such that
the variation in the unmodeled error between moving windows is ignored.

For time-varying unmodeled errors, developing an accurate model would be ex-
tremely beneficial so it may be incorporated into the positioning process for the real-time
estimation of a much larger number of unmodeled error parameters. However, until now,
little attention has been paid to unmodeled errors considering their time correlations [1].
Therefore, the purpose of this paper is to investigate the problem of selecting basic functions
for fitting unmodeled errors, which is a necessary step for providing a theoretical basis
and practical suggestions for the further development of specific time-varying models. To
achieve this goal, we compare three basic functions, polynomials, sinusoidal functions,
and combinatorial functions, to fit the unmodeled errors in differential positionings. The
experiment data were obtained from the International GNSS Service (IGS) and the US
National Oceanic and Atmospheric Administration (NOAA) UFCORS Center, and compar-
isons of different basic functions are carried out in terms of residuals, overall accuracy, and
processing time.

The rest of this paper is organized as follows. The source and preprocessing of
unmodeled error data are first introduced. Then, three alternative basic functions and cor-
responding methods are identified. Next, the results of fitting experiments and positioning
experiments are analyzed and discussed. Finally, the conclusions are summarized.

2. Data and Methodology
2.1. Unmodeled Error Data

To select a reasonable basic function for a time-varying unmodeled error, unmodeled
error data are required. This section describes the source of unmodeled errors and the
method used to obtain them.
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2.1.1. Baseline Data

The observation files were obtained from the website http://garner.ucsd.edu/pub/
highrate/cache/rinex/2023/114/ (accessed on 29 September 2023). The data used in this
paper were collected on 24 April 2023 from 0:00:00 to 5:59:59 GPS Time. We used the 3 h
data from 3:00:00 to 5:59:59 GPS Time to invert the unmodeled errors, which ensured that
the prior-convergence errors were not included in the results. The sampling interval was
1 s. Details of the stations and the baselines used in the inversion process are shown in
Table 1.

Table 1. Details of the stations and baselines.

Baseline
Number

Base
Station–Rover

Station

Observation
Type

Receiver Type at
the Base Station

Antenna and
Radome Types at
the Base Station

Epoch (s) Distance (km)

1 TEHA–MRRY L1C, L2W TRIMBLE NETR9 TRM57971.00 NONE 10,800 30.7
2 TEHA–BFSH L1C, L2W TRIMBLE NETR9 TRM57971.00 NONE 10,800 49.8
3 SIMM–CHOW L1C, L2W TRIMBLE NETR9 TRM57971.00 NONE 10,800 193.3
4 BFSH–CHOW L1C, L2W TRIMBLE NETR5 TRM57971.00 NONE 10,800 226.1

The stations in Table 1 belong to the UFCORS Center of the NOAA. The coordinates of
each station in Table 1 can be obtained from the weekly solution files. The precise ephemeris
and other products used in the subsequent experiments were retrieved from the IGS.

2.1.2. Inversion of Unmodeled Errors

We applied the unmodeled error inversion procedure proposed in a previous study [3]
to the data of the four baselines in Table 1. The specific inversion procedure consists of four
steps: (1) the establishment of carrier-phase double-difference (DD) observation equations,
(2) the calculation of the DD distance between receivers and satellites, (3) processing
atmospheric delays, and (4) the resolution of integer ambiguity and the calculation of
unmodeled errors.

Some research has pointed out that the specific values and characteristics of the
unmodeled errors are closely related to the positioning modes [20]. Therefore, in the
present contribution, we investigated the unmodeled errors in two widely used differential
positioning modes, which are detailed in Table 2. Specifically, we addressed the selection
of the unmodeled error basic functions in the following differential modes: estimating
atmospheric delays and using the ionospheric-free (IF) combination.

Table 2. Positioning settings for three positioning modes.

Categories
Settings

Estimating Atmospheric Delays Using IF Combination

Observations Uncombined L1, L2 f 2
1 L1− f 2

2 L2

f 2
1− f 2

2

Stochastic model σ2 = a2 + b2

sin2(el)
σ2 = a2 + b2

sin2(el)
Cut-off angle 10 degrees 10 degrees

Parameter estimation Extended Kalman filter Extended Kalman filter
Satellite orbit Precise ephemeris Precise ephemeris

Clock bias DD DD
Ionospheric delay DD + Parameter estimation DD + IF combination

Tropospheric delay DD + Parameter estimation DD + Parameter estimation
Relativistic effect Model correction Model correction
Earth Solid Tide IERS 2010 IERS 2010

Ambiguity resolution Continuous Continuous

In Table 2, the positioning parameters were estimated along with other parame-
ters such as ambiguity. The numerical settings of the parameters to be estimated dur-

http://garner.ucsd.edu/pub/highrate/cache/rinex/2023/114/
http://garner.ucsd.edu/pub/highrate/cache/rinex/2023/114/
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ing the solving process were assumed to be equal to those in the RTKLIB software
(version 2.4.3 b34) [26]. The initial values of the positioning parameters were obtained
from the single-point positioning (SPP) results, and the initial variance was set to 900 m2.
The initial value of the ambiguity parameter was calculated from the pseudorange and
phase observations with the initial variance set to 900 cycle2 and the process noise set to
10−8 cycle2. For the ionospheric delay, the initial value was set to 10−6 m, and its initial
variance and the variance of the process noise were determined using Equation (1).

σ2
iono =

(
stdiono · bl/104)2

q2
iono =

(
prniono · bl/104)2 · ∆t

(1)

where stdiono stands for the standard deviation factor of the ionospheric delay parameter
and takes a value of 0.03, prniono stands for the standard deviation factor of the process
noise and takes a value of 10−3, bl stands for the approximate length (unit: m) of the
baseline, and ∆t represents the time interval between the current epoch and the initial
epoch. For the tropospheric delay, the initial value was set to 0.15 m, and its initial variance
and the variance of process noise were determined using Equation (2).

σ2
trop =

(
stdtrop

)2

q2
trop =

(
prntrop

)2 · ∆t
(2)

where stdtrop stands for the variance factor of the tropospheric delay parameter and takes a
value of 0.3, prntrop stands for the variance factor of the process noise and takes a value of
10−4, and ∆t stands for the time interval between the current epoch and the initial epoch.

For the above two positioning modes (i.e., estimating atmospheric delays and using
the IF combination), the specific form of the carrier equation established in the first step is
as follows [3]: {

λ · ∇∆φ = ∇∆ρ + λ · ∇∆N +∇∆I +∇∆T + λ · ∇∆UEST
λIF · ∇∆φIF = ∇∆ρ + λIF∇∆NIF +∇∆T + λIF · ∇∆UIF

(3)

where λ and λIF stand for the uncombined and combined wavelengths, respectively; ∇∆
denotes the DD operator;∇∆φ and∇∆φIF represent the uncombined and combined carrier
observations, respectively; ∇∆ρ is the distance between the receivers and satellites after
the DD;∇∆N and∇∆NIF represent the uncombined and combined ambiguity parameters,
respectively; ∇∆I and ∇∆T stand for the ionospheric delay and tropospheric delay to
be estimated, respectively; and ∇∆UEST and ∇∆UIF correspond to the unmodeled errors
corresponding the two positioning modes, respectively.

After the positioning models were established, the true DD distance between the re-
ceivers and the satellite’s antenna∇∆ρ was calculated using the known station coordinates
and the satellite coordinates from the final precise ephemeris and the ANTEX file of the
IGS. Then, the modeled part of each systematic error and the optimal estimate of ambiguity
were calculated following the specific steps in [3]. Finally, the unmodeled error estimates
were obtained as follows:{

∇∆UEST = ∇∆φ−∇∆ρ/λ−∇∆N −∇∆I/λ−∇∆T/λ
∇∆UIF = ∇∆φIF −∇∆ρ/λIF −∇∆NIF −∇∆T/λIF

(4)

which indicates that the unmodeled errors vary with different positioning modes.
Following Equation (4), we inverted the unmodeled errors of the four baselines in

Table 1 and obtained the corresponding time series. Taking the DD satellite pair composed
of G31−G10 in the baseline SIMM-CHOW as an example, the unmodeled errors are shown
in Figure 1.
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Figure 1. Unmodeled errors of the G31−G10 satellite pair in No. 3 baseline in differential positioning
modes.

From Figure 1, it can be seen that unmodeled errors range from −0.6 m to 0.2 m, even
after 3 h of continuous observation. In addition, the trends of the time series corresponding
to the unmodeled errors for the L1 and L2 frequencies are quite similar, indicating that the
unmodeled errors are correlated among frequencies. These findings are in line with those
of a previous study [3].

2.2. Methodology

After obtaining the unmodeled error data, we needed to determine an optimal basic
function to fit it, which is beneficial for making good use of its time correlation in future
research. First, three alternative basic functions are introduced in this section. Some signifi-
cance tests were required, and their statistics are introduced. Furthermore, two indexes are
identified for evaluation. Eventually, we designed positioning experiments to demonstrate
the usability of the fitted unmodeled errors.

2.2.1. Alternative Basic Functions

From former investigations [3,23], the unmodeled error time series may include some
trend terms and periodic terms in which the periodic components are likely to arise from
atmospheric delays and multipath effects, as demonstrated by the experiments. Therefore,
we described the trend term of the unmodeled errors with a polynomial and described the
periodic terms with some sinusoidal functions, as follows:

∇∆U = a0 + a1t + · · ·+ amtm =
m

∑
i=0

aiti (5)

∇∆U = b1 sin(2πt f1 + ϕ1) + · · ·+ bn sin(2πt fn + ϕn) =
n

∑
j=1

bj sin
(
2πt f j + ϕj

)
(6)

∇∆U =
m

∑
i=0

aiti +
n

∑
j=1

bj sin
(
2πt f j + ϕj

)
(7)

where ∇∆U represents the unmodeled error obtained in the last section and t represents
the time interval from the initial epoch; m and n represent the orders of the polynomials
and the number of sinusoidal functions, respectively; and f j(j = 1, · · · , n) represents the
frequency of each sinusoidal function, which is determined by the significant frequency
components of the Fourier transform results from the previous study [3]. The range of
the values taken by f j(j = 1, · · · , n) is mainly concentrated in 4× 10−4 ∼ 5× 10−3 Hz;
ai(i = 1, · · · , m) and bj(j = 1, · · · , n) represent the coefficients of the polynomials and the
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amplitudes of the sinusoidal functions, respectively, which are estimated via the Kalman
filter; and ϕj(j = 1, · · · , n) is the initial phase to be estimated.

Assume that satellites s1 and s2 are observed simultaneously by receivers r1 and r2 at
epoch t. Taking the basic function shown in Equation (7) as an example, the unmodeled
error model corresponding to L1 can be listed at this epoch as follows:

∇∆Us1s2
r1r2,L1 =

m

∑
i=0

ai
s1s2
r1r2,L1ti +

n

∑
j=1

bj
s1s2
r1r2,L1 sin

(
2πt f j + ϕj

)
= HX (8)

where

H =
[

1 · · · tm sin(2π f1) cos(2π f1) · · · · · · sin(2π fn) cos(2π fn)
]

X =
[

a0 · · · am b1 cos ϕ1 b1 sin ϕ1 · · · · · · bn cos ϕn bn sin ϕn
]T (9)

Meanwhile, the state equation is given as follows:

Xt = Xt−1 + ηt (10)

where ηt ∼ N(0, Qt) stands for the process noise of the state vector and Qt = 10−3 ·
I(m+n)×(m+n).

Then, we can estimate the parameters using a Kalman filter. The unknown parameters
in the other two basic functions are estimated in a similar way and, for brevity, they are not
introduced again.

2.2.2. Model Testing and Evaluation

Once the parameters are solved, the models need to be tested. First, the models must
be tested for their overall significance, and the original and alternative hypotheses are as
follows:

H0 : a0 = a1 = · · · = am = b1 = · · · = bn = 0
H1 : ai(i = 0, 1, · · · , m) and bi(i = 1, · · · , n) are not all equal to 0

(11)

where H0 represents the original hypothesis and H1 represents the alternative hypothesis.
The corresponding statistic is calculated as follows:

f =
∑ (ŷi − y)2/k

∑ (yi − ŷi)
2/(n− k− 1)

(12)

where yi represents the value of the unmodeled error obtained via the inversion; ŷi is the
estimate of the unmodeled error calculated using the model; y is the mean of yi; and k
and n represent the number of variables and samples, respectively. The statistic f follows
a distribution of F(k, n− k− 1) where k and n− k− 1 are the degrees of freedom of the
Fisher–Snedecor distribution [27].

After taking the significance level α = 0.05, F(k, n− k− 1) and f can be compared.
If f < Fα(k, n− k − 1), the original hypothesis is accepted, indicating that the model is
not significant; otherwise, the original hypothesis is rejected, indicating that the model is
significant.

After the model is tested to be significant, the second step requires a significance test
for each estimated parameter. For each parameter βi, we can calculate a statistic t that
follows the distribution of t(n− k− 1) where n− k− 1 represents the degree of freedom
for Student’s t-distribution [27]. After taking the significance level α = 0.05, the critical
value tα/2(n− k− 1) can be checked. If |t| < tα/2(n− k− 1), it means that the parameter
βi is not significantly different from zero. On the contrary, it means that the parameter βi is
significantly not equal to zero. If a parameter is not significant, the corresponding variable
should be removed, and the model should be rebuilt.
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After the model test, we chose two indexes, the R-square and Root Mean Square Error
(RMSE), to evaluate the corresponding model. The closer the RMSE is to zero, the higher
the overall accuracy of this alternative basic function. The value of the R-square ranges
from 0 to 1, and the closer it is to 1, the better the model fits.

2.2.3. Positioning Verification

To verify the applicability of the fitted unmodeled errors, we carried out positioning
experiments. The main idea was to perform the regular positioning process after correcting
the DD observations using the fitted unmodeled errors. The results of this positioning are
then compared with the uncorrected positioning results.

Taking the mode of estimating atmospheric delays in Equation (3) as an example, the
uncorrected observation equation is

λ · ∇∆φ = ∇∆ρ + λ · ∇∆N +∇∆I +∇∆T + ε (13)

where λ stands for the wavelength; ∇∆ denotes the DD operator; ∇∆φ represents the
uncorrected carrier observation; ∇∆ρ is the distance between the receivers and satellites
after the DD; ∇∆N represents the ambiguity parameter; ∇∆I and ∇∆T stand for the
ionospheric delay and tropospheric delay to be estimated, respectively; and ε corresponds
to the observation noise.

The observation equation corrected with the fitted unmodeled errors is

λ ·
(
∇∆φ−∇∆Û

)
= ∇∆ρ + λ · ∇∆N +∇∆I +∇∆T + ε (14)

where ∇∆Û stands for the estimate of the unmodeled errors from the model.
The above two types of observation equations are solved for positioning separately

to obtain the corresponding positioning results. Finally, the deviations between these
two kinds of positioning results and the true values are compared separately to verify
whether the fitted unmodeled errors are feasible.

3. Results

After preparing the unmodeled error data and determining the alternative basic
functions, we conducted modeling experiments for the unmodeled errors under differential
positionings: estimating atmospheric delays and using the IF combination in Table 2.
First, we conducted the experiments using polynomials and determined the value of m
in Equation (5). Second, experiments were carried out using the sinusoidal functions,
and the value of n in Equation (6) was analyzed based on the experimental results. Then,
combinatorial models were analyzed based on the values of m and n. After fitting the
unmodeled errors, the positioning experiments were conducted to verify the applicability
of the fitted unmodeled errors.

3.1. Fitting Experiments
3.1.1. Polynomials

We fitted the unmodeled errors in differential positionings with polynomials of dif-
ferent orders, as shown in Equation (5). In the experiments in this section, we fitted the
unmodeled errors with first-, second-, third-, and fourth-order polynomials, respectively.
Taking the unmodeled error data obtained via inversion as the reference, we obtained
the residuals of different polynomials. Using the f1 frequency of the DD satellite pairs
comprising G31−G01 in baseline No. 1, G31−G10 in baseline No. 3, and G31−G21 in
baselines No. 2 and No. 4 as examples, the corresponding residuals are shown in Figure 2.
In Figure 2, m refers to the order of the polynomial.
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As can be seen from Figure 2, the residuals of polynomials of different orders, as
shown in Equation (5), appear to decrease as the number of epochs increases. The second-
and higher-order polynomials reach good fitting earlier than the first polynomial. After
the 100th epoch, the residuals of the second- and higher-order polynomials are basically
less than 1 mm. The differences between these polynomials are mainly within the initial
100 epochs. Specifically, the higher the order of the polynomial, the faster the absolute
values of residuals decrease. As expected, the residuals of a polynomial improve as its order
increases. In particular, the improvement in residuals is significant for the second-order
polynomial compared to the first-order polynomial. In a situation in which the order
of the polynomial is greater than two, this improvement is not as significant as from a
first-order polynomial to a second-order polynomial. To analyze the effect of order on the
polynomial residuals in more detail, we counted a specific epoch in which the residuals of
all its subsequent epochs are less than 0.003 m, and this convergence time is depicted in
Table 3. The reason for choosing 0.003 m as the threshold was that the random error of the
carrier observations was generally around 0.003 m.

From Table 3, we can conclude that in differential positioning, the higher the order,
the faster the residuals converge. It can also be found that the improvement from the first
order to second order is the most significant in Table 3. We further calculated the R-squares
and RMSEs for each polynomial in Figure 2, as shown in Figure 3.
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Table 3. The convergence time of residuals in Figure 2.

Positioning Mode Baseline
Number

Convergence Time (s)

m = 1 m = 2 m = 3 m = 4

Estimating atmospheric delays

1 319 25 9 5
2 68 11 5 1
3 12 3 3 3
4 146 30 11 6

Using the IF combination

1 720 39 14 8
2 243 4 1 1
3 223 12 6 1
4 597 35 11 6
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As can be seen from Figure 3, basically, the R-square of each polynomial is above 0.99,
indicating that each polynomial has good fitting. Similar to the residuals, the improvement
in the R-square value is also significant when the order is increased from 1 to 2. In terms of
the RMSE, the RMSEs of the second-, third-, and fourth-order polynomials are basically
less than 2 mm. This illustrates that these three polynomials have high levels of modeling
accuracy in general. As for the first-order polynomial, some of its RMSEs are close to
or even exceed 5 mm, suggesting that the first-order polynomial is not as accurate as
the higher-order polynomials. Therefore, in terms of residuals, convergence time, and
overall accuracy, the second- and higher-order polynomials perform better than the first-
order polynomials. In addition, the computational cost of these polynomials deserves to
be considered, so the processing time of these polynomials was investigated. The time
taken to fit the unmodeled errors of one satellite pair for each polynomial was calculated
and is shown in Table 4. The time in Table 4 is the average time per fit, calculated after
50 repetitions using a particular polynomial. It should be noted that the experiments were
conducted on a computer equipped with an Intel i5-9400 CPU and 32 GB of RAM.
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Table 4. Processing time to fit the unmodeled errors of one satellite pair for each polynomial.

Positioning Mode
Processing Time (s)

m = 1 m = 2 m = 3 m = 4

Estimating atmospheric delays 0.467 0.592 0.739 0.875
Using the IF combination 0.430 0.586 0.729 0.855

As shown in Table 4, a higher order leads to a longer time required for the fit. For the
sake of balancing the effectiveness and computational cost of the fit, we conclude that the
second order is the optimal choice when fitting the unmodeled errors with polynomials.

3.1.2. Sinusoidal Functions

In this section, some sinusoidal functions are used to fit the unmodeled errors. The
number of the sinusoidal functions n shown in Equation (6) is taken as 4, 6, 8, 10, and 12.
Taking the unmodeled error data obtained via inversion as the reference, we can obtain
the residuals of different sinusoidal functions. Using the f1 frequency of the DD satellite
pairs comprising G31−G01 in baseline No. 1, G31−G10 in baseline No. 3, and G31−G21 in
baselines No. 2 and No. 4 as examples, the residuals are shown in Figure 4. In Figure 4, n
refers to the number of sinusoidal functions.
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As we can see from Figure 4, all the sinusoidal functions exhibit large residuals,
regardless of n. When estimating the atmospheric delays or using the IF combination,
the residuals of the sinusoidal functions are close to ±0.1 m at the maximum. These
results suggest that a trend term may be more prevalent than some periodic terms in the
unmodeled errors in medium and long baselines. It is the presence of the trend term that
makes it difficult to accurately fit the unmodeled errors with sinusoidal functions alone. As
shown in Figure 4, the residuals of these sinusoidal functions do not show convergence, so
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there is no need to account for the convergence time. As for the accuracy, we calculated
R-square and RMSE values for all the sinusoidal functions in Figure 4, as shown in Figure 5.
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In Figure 5, most of the sinusoidal functions have negative R-square values. As for the
RMSE, the RMSE values of basically all of the sinusoidal functions are in the range of 20 mm
to 80 mm, which is from ten to tens of times higher than the RMSEs of the polynomials in
the previous section. These phenomena also indicate that it is difficult to accurately fit the
unmodeled errors in medium and long baselines when using only sinusoidal functions.
Therefore, in the two positioning modes in Table 2, we do not recommend using only the
sinusoidal functions to fit the unmodeled errors in baselines above 30 km.

3.1.3. Combinatorial Functions

Although the fit did not perform effectively when using the sinusoidal functions alone,
the unmodeled errors in the medium and long baselines do exhibit some periodicity. We
therefore investigate whether using a combinatorial function of polynomial and sinusoidal
functions yields better results than one or the other alone.

This section analyzes the performance of a combinatorial function, which is in the form
of Equation (7), in fitting the unmodeled errors in medium and long baselines. According
to the experimental results in the previous two sections, the second-order polynomial
is the most appropriate choice when fitting unmodeled errors using polynomials alone.
Therefore, in this section, we set the polynomial order in the combinatorial function as 2,
that is, the value of m in Equation (7) was determined to be 2. On the basis of this second-
order polynomial, we combined it with 4, 6, 8, 10, and 12 sinusoidal functions, respectively,
and investigated the fitting performances of these combinatorial functions. Taking the
unmodeled error data obtained through inversion as the reference, we also obtained the
residuals of different combinatorial functions. Using the f1 frequency of the DD satellite
pairs comprising G31−G01 in baseline No. 1, G31−G10 in baseline No. 3, and G31−G21 in
baselines No. 2 and No. 4 as examples, the residuals are shown in Figure 6. In Figure 6, m
and n refer to the order of the polynomial and the number of sinusoidal functions.
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In Figure 6, the black curves represent the residuals of the second-order polynomial,
and the other colors represent the combinatorial functions composed of the second-order
polynomial and different numbers of sinusoidal functions. From Figure 6, we can see that
after the 40th epoch, the black curves basically overlap with the other curves, indicating that
after filtering for a period of time, the combinatorial function does not differ significantly
from the second-order polynomial. In addition, before the 40th epoch, the performance
of the combinatorial function in terms of residuals is slightly improved compared to the
second-order polynomial. At the same epoch, the combinatorial functions seem to have
smaller residuals than the second-order polynomial. Accordingly, we conjecture that
the residuals of the combinatorial functions may converge faster than the second-order
polynomial.

To verify the above conjecture, we measured the convergence times of the residuals
of the second-order polynomial and the combinatorial functions in Figure 6, as shown in
Table 5. It should be noted that the definition of the convergence time in Table 5 is the same
as the definition in Table 3.

As presented in Table 5, the combinatorial function has a shorter convergence time for
the residuals compared to the second-order polynomial when estimating the atmospheric
delays and using the IF combination. However, the convergence time of the combinatorial
function is only three or four seconds shorter than that of the second-order polynomial.
This indicates that the improvement of the combinatorial function over the second-order
polynomial is not significant.

To compare the overall accuracy, we compared the R-square and RMSE values of the
combinatorial functions and the second-order polynomial; see Figure 7.
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Table 5. Convergence times of residuals in Figure 6.

Positioning Mode Baseline
Number

Convergence Time (s)

m = 2, n = 0 m = 2, n = 4 m = 2, n = 6 m = 2, n = 8 m = 2, n = 10 m = 2, n = 12

Estimating atmospheric
delays

1 25 21 19 18 18 18
2 11 7 7 7 7 7
3 3 2 2 2 2 2
4 30 25 23 23 23 20

uUsing IF combination

1 39 39 35 35 35 35
2 4 1 1 1 1 1
3 12 8 8 8 8 8
4 35 31 26 26 26 26
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In Figure 7, all the R-square values are above 0.99, and all the RMSEs are basically
below 2 mm, which confirms that both the second-order polynomial and the combinatorial
functions in Figure 7 are outstanding in terms of their accuracy. After adding the sinusoidal
functions, the differences of the residuals between the combinatorial functions and the
polynomials are quite insignificant. In terms of R-square values, the improvements of the
combinatorial functions are roughly 0.001, and in terms of RMSEs, the improvements of
the combinatorial functions are basically less than 1 mm. These results indicate that adding
the sinusoidal functions does not provide a significant improvement in terms of the overall
accuracy. This may imply that the trend term accounts for a more important component
of the unmodeled errors in medium and long baselines. This may also be the reason for
which a good fit can be achieved with polynomials alone.

Finally, we analyzed the performance of the combinatorial functions in terms of
processing time. We calculated the average time used to fit the unmodeled errors for one
satellite pair for each combinatorial function, as shown in Table 6. The time in Table 6 has
the same definition as that in Table 4.
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Table 6. Processing time to fit the unmodeled errors of one satellite pair for second-order polynomial
and combinatorial functions.

Positioning Mode
Processing Time (s)

m = 2, n = 0 m = 2, n = 4 m = 2, n = 6 m = 2, n = 8 m = 2, n = 10 m = 2, n = 12

Estimating atmospheric
delays 0.592 1.306 1.595 1.909 2.068 2.531

Using IF combination 0.586 1.284 1.598 1.905 2.214 2.533

Table 6 shows that the more sinusoidal functions there are in a combinatorial function,
the longer the time required for the fit is. The time required for the combinatorial function
is about two to five times longer than that of the second-order polynomial. Therefore, we
recommend the second-order polynomial as the basic function for unmodeled errors due to
its processing time and overall accuracy because the combinatorial function takes several
times the time of the second-order polynomial but only obtains a marginal improvement.
In terms of the convergence time of the residuals, when estimating atmospheric delays or
using the IF combinations, the second-order polynomial is still a worthwhile basic function
to use.

3.2. Positioning Experiments

Following the relevant methodology in Section 2.2.3, we performed positioning ex-
periments using the No. 4 baseline in Table 1 as an example. The positioning experiments
used two modes: estimating atmospheric delays and ionospheric-free combination. Under
the different positioning modes, we first utilized the uncorrected observations for the
positioning. Second, we brought the unmodeled errors obtained from the best performing
second-order polynomial in the fitting experiments into Equation (14) and performed the
positioning again. The deviations of the positioning results are shown in Figures 8 and 9.
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In Figures 8 and 9, the red and green curves represent the positioning deviations of the
uncorrected observations and the corrected observations, respectively. It can be seen that
the positioning deviation of the corrected observations is significantly improved over the
uncorrected observations. It should be noted that the observation data used in this section
are also from the last 10,800 epochs of the data described in Section 2.1.1. Therefore, the
convergence process is unobservable in Figures 8 and 9. For most epochs, the deviations of
the corrected results are closer to zero than the uncorrected results.

We also counted the RMSEs of the positioning results for the uncorrected and the
corrected observations, as shown in Table 7.

Table 7. RMSEs of the positioning results for the uncorrected and the corrected observations.

Positioning Mode Directions RMSEs of Uncorrected
Positioning (m)

RMSEs of Corrected
Positioning (m)

Improvement
(%)

estimating atmospheric
delays

E 0.0224 0.0080 64.29
N 0.0051 0.0031 39.22
U 0.0165 0.0033 80.00

using IF combination
E 0.0115 0.0109 5.22
N 0.0088 0.0053 39.77
U 0.0184 0.0066 64.13

As it can be seen in Table 7, the observations corrected for the unmodeled errors from
the second-order polynomial provide a remarkably significant improvement in terms of
the positioning results. When estimating atmospheric delays, the improvement effects
in the three directions are 64.29%, 39.22%, and 80.00%, respectively. When using the
IF combination, the improvement effects in the three directions are 5.22%, 39.77%, and
64.13%, respectively. These improvements in the positioning results indicate that the
fitted values incorporated into Equation (14) are able to reflect, at least in part, the reality
of the unmodeled errors in the observation equations. Also, these experiment results
demonstrate the usability of fitting the unmodeled errors for positioning using the second-
order polynomial.



Remote Sens. 2023, 15, 5022 16 of 18

4. Discussion

Previous studies [3,23] indicated that the unmodeled errors contain periodic compo-
nents. The frequency range of these periodic components is mainly 4× 10−4 ∼ 5× 10−3 Hz,
corresponding to a time range of about 200~2500 s. In this paper, when fitting the unmod-
eled errors with the sinusoidal or combinatorial functions, the chosen frequency ranges
were also concentrated in the 4× 10−4 ∼ 5× 10−3 Hz range. However, from Figure 4, it can
be found that a good result cannot be obtained when a sinusoidal function alone is used to
fit the unmodeled errors. Meanwhile, from Figures 6 and 7 and Table 5, it can be found that
the addition of sinusoidal functions improves the fitting effect but quite minimally when
using a combinatorial function. From these experimental results, we can conclude that the
periodic components of the unmodeled errors represent a minor proportion and that most
of the components behave as trend term signals.

Previous studies also concluded that atmospheric delays are the main component of
GNSS unmodeled errors. Meanwhile, noting that the unmodeled error time series used in
this paper lasted 3 h, the experiments also imply that the atmospheric delays are relatively
stable within 3 h. The periodic components (4× 10−4 ∼ 5× 10−3 Hz) may be mainly
attributed to the multipath effect and some uncorrected receiver bias and are not the main
proportion of unmodeled errors. This explains why the unmodeled errors can be fitted well
using polynomial functions alone and limits the conclusion of this paper to the short-term
modeling of unmodeled errors. This application is relevant to real-time navigation.

Another reason for the minor proportion of the periodic components in the unmodeled
error may be related to the estimation of the unmodeled errors. The main source of the
unmodeled errors obtained from the inversion in this paper was the component in the
positioning and the ambiguity parameters. During the solving process, it is possible that
the errors absorbed by the static positioning and the ambiguity parameter were mainly non-
periodic components. Most of the periodic components were absorbed by other parameters.
These parameters cannot be considered in the inversion method of this paper because it is
difficult to obtain their true values.

In the positioning experiments, there is a significant improvement in the positioning
results corrected by the fitted unmodeled errors. This indicates that the fitted, unmodeled
errors were consistent with the actual unmodeled errors in the observation equations.
There was still some deviation between the improved positioning results and the true
values because the original modeled errors were still present in the observations. When
positioning with observations corrected for unmodeled errors, these originally modeled
errors affected the parameter estimates in the current epoch. However, these modeled
errors were smaller compared to the errors in the uncorrected equations, explaining the
larger improvement over the original positioning results, although the corrected results
still deviated somewhat from the true values.

5. Conclusions

The present study addressed some basic functions to account for unmodeled errors
in medium and long GNNSS baselines in two differential positioning modes: estimating
atmospheric delays and using the IF combination. We used four baselines ranging from 30
to 220 km to invert an unmodeled error time series to provide a reference residual. We then
selected three alternative basic functions including polynomials, sinusoidal functions, and
combinatorial functions, and methods for their solution, testing, and evaluation methods
were introduced. At last, fitting experiments and positioning experiments were conducted
to analyze and compare these three basic functions.

The experimental results can be summarized as follows. (1) When fitting unmodeled
errors with polynomials in a long baseline, the second-order polynomial is the optimal
choice. Compared with the first-order polynomial, the second-order polynomial has higher
accuracy and a faster convergence of residuals. Compared with higher-order polynomials,
the second-order polynomial is more efficient in the case of ensuring comparable accuracy.
(2) It is difficult to achieve high-accuracy results by fitting the unmodeled errors with
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sinusoidal functions only. (3) The combinatorial functions have basically no advantage
compared with the second-order polynomial in short-term cases. When estimating atmo-
spheric delays or using the IF combination, the combinatorial functions are essentially
comparable to the second-order polynomial in terms of residual convergence time and
overall accuracy but takes several times longer than the second-order polynomial. (4) After
the observations have been corrected by the fitted unmodeled errors from the second-order
polynomial, a remarkably significant improvement appears in terms of the positioning
results, which demonstrates the usability of fitting the unmodeled errors for positioning
using the second-order polynomial.

Based on the above experimental findings, we suggest that a second-order polynomial
can be used as the basic function for a short-term time-varying model of unmodeled errors
in medium and long baselines. Further work needs to be carried out in order to add the
basic functions into the positioning process of long baselines to estimate model parameters
in real time.
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