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Abstract

Audio frequency-shift keying (AFSK) is a widely adopted modulation scheme
for CubeSat systems due to its favorable bandwidth e�ciency and implemen-
tation simplicity. However, coherent detection usually is avoided because
synchronization impairments, caused by intense line-of-sight (LOS) dynam-
ics inherent in low Earth orbit (LEO), may signi�cantly degrade the bit error
rate (BER). This paper presents a new all-digital coherent AFSK demodula-
tor based on a Kalman �lter (KF) for carrier phase and timing delay synchro-
nization and the Viterbi algorithm for bit detection. The Viterbi algorithm
is employed for maximum likelihood sequence detection, and the detected bit
statistics are fed back to the KF to estimate phase shift, Doppler frequency
shift, and Doppler drift induced by the LOS dynamics. Original mathemati-
cal analyses are derived to provide a theoretical foundation for the proposed
demodulator's operation, speci�cally addressing its synchronization accuracy
in dynamic LEO environments. The proposed demodulator is evaluated con-
sidering an additive white Gaussian noise channel with real CubeSat orbits.
The performance results obtained through computer simulations demonstrate
that the proposed model can withstand such scenarios with a gain of 5 dB
in terms of BER compared to the conventional noncoherent AFSK demod-
ulator. The KF performance is assessed using a moving root-mean-square
error (MRMSE) statistic and the trace of its state error covariance matrix
estimate.
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1. Introduction

A CubeSat is a class of small-scale satellites with a standard unit de�ned
as a 10 cm (3.9 in) cube weighing up to 2 kg. Its fast development time, small
dimensions, and lightweight were the main reasons for making space explo-
ration a�ordable for universities, small- and medium-sized companies, and
non-governmental organizations. On the one hand, CubeSats signi�cantly
contributed to the exponential growth of the number of satellites launched
in the last two decades, which fosters opportunities for innovation and ad-
vancements in the satellite market technology [1]. On the other hand, the
overcrowding of radio bands allocated for satellite communication (mainly
in low orbit) has concerned engineers and scientists, who have proposed new
spectrally e�cient modulations as alternatives to the current schemes [2].

Despite the variety of modulations adopted in recent years, it is possible to
notice a consistency in those used in service telecommunications subsystems
[3]. These subsystems of the satellite are indispensable to any space mission
as they establish telemetry, tracking, and telecommand communication with
the control station. Its main functions are [4, 5]:

1. Receiving and retransmitting tracking signals to enable measurements
of the ground-satellite distance and the radial velocity, allowing to de-
termine its geographical location and its orbit parameters

2. Receiving telecommand signals from the control station to initiate ma-
noeuvres and to change the satellite operation

3. Sending telemetry signals generated by the on-board computer dur-
ing the housekeeping (beacon signals). This data contains information
about the satellite's health, such as temperature operation and voltage

The main on-board equipment of service telecommunication subsystems is
the telemetry, tracking, and command (TT&C) module, which comprises
a set of antennas, an analogue front-end, and a digital modem. Its func-
tions are modulating and demodulating the transmitted and received signal,
respectively. Audio-frequency shift keying (AFSK) is widely used for the up-
link of telecommand signals due to its compatibility with the data layer used
in most CubeSat applications, the AX.25 protocol [6]. This allows amateur
radio operators worldwide to collect information from the satellites and, in
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some cases, improve global availability. Simplicity is also a decisive factor in
the widespread use of AFSK. In general, inexpensive programmable devices
can be used to implement the AFSK modulator [7].

On the modulator side, the AFSK signal is usually implemented with a
continuous phase. Due to its constant envelope property, the AFSK signal
allows using nonlinear ampli�ers without causing spectral regrowth [8]. Such
devices are 2 dB to 3 dB more e�cient than power ampli�ers of class A
or AB [9]. Concerning the demodulator, the literature reports noncoherent
detection as the preferred approach for AFSK systems [10, 11]. Although
the advantage of simplicity is evident, this solution performs poorly in terms
of bit error rate (BER) compared to the coherent detection [12]. It directly
impacts the data transmission rate of the telecommand link, which is limited
to 1200 bps for most products available on the market [13]. In addition to
the bit rate improvement, an increased BER can also impact the antenna
design on board the satellite, where space, power, and weight limitations are
demanding. However, developing a coherent demodulator imposes a higher
complexity on the receiver design. The computational complexity of the sym-
bol detection is usually the major issue as this task might be overwhelming
for modulations with memory. For instance, the Viterbi algorithm, an e�-
cient implementation of the maximum likelihood sequence detection, requires
O(𝑝𝑞) operations per trellis stage, where 𝑝 is the number of nodes, 𝑞 is the
number of transitions to the next state, and O(·) denotes the big O notation
[14].

Another concern in adopting coherent demodulation is dealing with syn-
chronization impairments. Typically, coherent detection of continuous-phase
modulation (CPM) signals is avoided because the synchronization circuits
are usually complex [15]. Furthermore, most of the available works address
this problem using analog systems, whereas, for the application at hand,
due to the adopted electronic technology, a demodulation architecture with
discrete-time processing is necessary. Thus, the design of modern digital
modems is of paramount importance for further development and e�cient
operation of micro1, nano2, and pico3 satellite systems. The impressive im-
provement of digital signal processing techniques, �eld-programmable gate

1From 10 kg up to 100 kg.
2From 1 kg up to 10 kg.
3From 0.1 kg up to 1 kg.
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arrays (FPGAs), and microelectronics has motivated a new generation of
TT&C transceivers that brings hardware �exibility provided by the radio-
de�ned software concept, but, at the same time, goes along with the current
modulation schemes.

In this paper, a new all-digital coherent AFSK demodulator with joint
phase and timing estimator is presented. We assume that the AFSK sig-
nal passes through an additive white Gaussian noise (AWGN) channel with
phase and timing impairments due to the satellite-station line-of-sight (LOS)
dynamics. The Viterbi algorithm is used for bit detection, and a Kalman �l-
ter (KF) algorithm is used to estimate the LOS phase shift, which takes
into account its �rst- and second-order derivative to ensure robust tracking
performance under realistic CubeSat communication link scenarios. Addi-
tionally, the LOS timing delay is directly derived from the LOS phase, and
the new samples are generated through interpolation. The KF estimates
operate jointly and in decision-directed (DD) mode with the Viterbi algo-
rithm, i.e., the detected bit statistics are fed back to the KF to update its
estimates. The system BER is analyzed through Monte Carlo simulations
for di�erent realistic scenarios of LOS dynamics, simulated using the Simpli-
�ed General Perturbations 4 (SGP4) [16] algorithm that precisely propagates
satellite orbits by using a two-line element (TLE) [17] �le. In addition, the
performance of the proposed scheme is also compared to the theoretical bit
error probability of the noncoherent approach (usually adopted in the litera-
ture), which highlights the main advantage of the coherent demodulator. The
quality of the KF estimates are assessed using a moving root mean squared
error (MRMSE) statistic, which captures how accurate the estimates are at
each part of the LOS dynamic scenario, and the trace of the KF state error
covariance matrix estimate, as these metrics e�ectively capture the �lter's
estimation accuracy and the overall uncertainty in the state estimates, re-
spectively.

The main contributions of this work are:

� New decision-directed closed-loop all-digital AFSK demodulator com-
prised of the Viterbi algorithm for bit detection and a KF for synchro-
nization

� Original mathematical analysis of the approach

� Realistic simulation and performance evaluation of the proposed joint
synchronization and demodulation scheme under di�erent scenarios of
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CubeSat LOS dynamics orbiting in LEO

This paper is organized as follows: the AFSK signal and the channel
model are presented in Section 2 and 3, respectively. In Section 4, the AFSK
demodulator is detailed. Section 5 is devoted to evaluating the proposed
demodulator under realistic LOS dynamics scenarios. Finally, in Section 6,
our conclusions are outlined.

1.1. Notation

Continuous- and discrete-time signals are indexed in parenthesis and
brackets, respectively. For instance, 𝑠 (𝑡) and 𝑠 [𝑛] represent a continuous-
time signal and its discrete-time version at a given sampling time. For the
continuous-time case, superscripts dots are used to denote derivatives. For
example, ¤𝑠 (𝑡) and ¥𝑠 (𝑡) denote the �rst- and second-order derivative with
respect to 𝑡. The matrix 0𝑝×𝑞 indicates a zero matrix with 𝑝 rows and
𝑞 columns. The positive underscore superscript in Z+ or R+ denotes the
set of nonnegative integers or real numbers, respectively. The notations
𝑎(𝑡) ∼ N (𝜇𝑎, 𝜎2

𝑎 ) and 𝑏(𝑡) ∼ CN (𝜇𝑏, 𝜎2
𝑏 ) denote a real- and complex-valued

Gaussian process with mean 𝜇𝑎 and 𝜇𝑏, and variance 𝜎2
𝑎 and 𝜎2

𝑏 , respec-
tively. Moreover, the notation 𝑎 [𝑛] ∼ U (𝑎, 𝑏) denotes a uniformly dis-
tributed stochastic process within the range [𝑎, 𝑏].

2. AFSK Signal

The AFSK is a binary modulation that uses audible frequencies to trans-
mit the data. The switching from one frequency to another can be accom-
plished using two di�erent oscillators tuned to the desired frequencies. Al-
ternatively, the AFSK modulator can preserve the continuity of the phase
by generating a continuous-phase frequency-shift keying (CPFSK) signal. In
this case, instead of switching the signals from two di�erent oscillators, a
unique oscillator with constant frequency is used. However, its instanta-
neous phase varies linearly depending on the transmitted bit. This results in
a continuous-phase signal whose instantaneous frequency switches between
the desired frequencies. Considering the continuous-phase implementation,
the pre-envelope of the transmitted AFSK signal can be de�ned as

𝑠𝑅𝐹 (𝑡) =
√︂

2𝐸𝑏
𝑇

cos
(
2𝜋 𝑓𝑅𝐹 𝑡 +Φ (𝑡,A)

)
, (1)
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where 𝐸𝑏 is the bit energy, 𝑓𝑅𝐹 is the carrier radio frequency, 𝑡 is the time
instant, Φ (𝑡,A) ∈ R is the time-varying phase of the AFSK signal, which de-
pends on the transmitted symbol sequenceA = {𝛼 [0] , 𝛼 [1] , . . . , 𝛼 [𝑘]} ∀ 𝑘 ∈
Z+ with 𝛼 [𝑘] ∈ {−1, 1} being the 𝑘th symbol with duration of 𝑇 seconds.
The signal Φ (𝑡,A) can be expressed in the interval 𝑘𝑇 ≤ 𝑡 < (𝑘 + 1) 𝑇 as

Φ (𝑡,A) = 2𝜋ℎ
𝑘∑︁
𝑖=0

𝛼 [𝑖] 𝑞 (𝑡 − 𝑖𝑇)

= 2𝜋ℎ𝛼 [𝑘] 𝑞 (𝑡 − 𝑘𝑇) + 2𝜋ℎ
𝑘−1∑︁
𝑖=0

𝛼 [𝑖] 𝑞 (𝑡 − 𝑖𝑇)

= 2𝜋ℎ𝛼 [𝑘] 𝑞 (𝑡 − 𝑘𝑇) + 𝜋ℎ
𝑘−1∑︁
𝑖=0

𝛼 [𝑖]

= 𝜃 [𝑘] + 𝜃 (𝑡, 𝛼 [𝑘]) , (2)

where

𝑞 (𝑡) =




0 for 𝑡 < 0,

𝑡

2𝑇
for 0 ≤ 𝑡 ≤ 𝑇

1

2
for 𝑡 > 𝑇

(3)

is the phase pulse, given by [18], 𝜃 (𝑡, 𝛼 [𝑘]) = 2𝜋ℎ𝛼 [𝑘] 𝑞 (𝑡 − 𝑘𝑇) is the
transition phase during 𝑘𝑇 ≤ 𝑡 < (𝑘 + 1) 𝑇 , and

𝜃 [𝑘] = 𝜋ℎ
𝑘−1∑︁
𝑖=0

𝛼 [𝑖] (4)

is the phase memory up to the symbol 𝛼 [𝑘 − 1]. The variable ℎ ∈ R in-
dicates the modulation index and de�nes how much the time-varying phase
increases or decreases for each transmitted symbol. If ℎ is rational, when
𝑡 = 𝑘𝑇 , Φ (𝑡,A) = 𝜃 [𝑘] ∈ B, where B is a �nite set of terminal phases. The
cardinality of B depends on ℎ since each terminal phase is de�ned in intervals
of ±𝜋ℎ. The modulation index is given by

ℎ = 𝑇Δ 𝑓 , (5)
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where Δ 𝑓 is the di�erence between the frequencies used to transmit the data.
Previous works have reported the use of the AFSK signalling with a bit

rate of 𝑅 = 1/𝑇 = 1200 bps (bits per second) and with a frequency di�erence
of Δ 𝑓 = 1 kHz [10, 11]. Under these conditions, ℎ = 5/6 and its terminal
phases are given by [12]

B = {𝛽0, 𝛽1, . . . , 𝛽11}

=

{
0,

5𝜋

6
,
10𝜋

6
, . . . ,

55𝜋

6

}
. (6)

Therefore, the AFSK signalling contains #B = 12 terminal phases, where #·
denotes the cardinality operation. The phase Φ (𝑡,A) decreases or increases
5𝜋/6 rad depending upon whether the 𝑘th transmitted bit is 𝛼𝑘 = −1 or 𝛼𝑘 =
1, respectively. In case the terminal phase would fall outside the extremes
𝛽0 and 𝛽11, it wraps around these values to stay inside the set B.

3. Channel Model

The uplink frequency lies within the range of 148-150 MHz [19, Chapter
5]. At these frequencies, tropospheric e�ects can be neglected because the
troposphere is nondispersive only for frequencies up to 15 GHz [20, p. 122].
Consequently, group and phase delays remain nearly constant4, and their im-
pact can be accurately modeled and removed by using suitable tropospheric
models. Additionally, this work assumes negligible refractive ionospheric
e�ects as CubeSats in low Earth orbit (LEO) typically remain in the iono-
sphere's lower layers, where this disturbance is mild [21]. Consequently, the
phase and group delays for the uplink carrier frequency are nearly constant
and can be e�ectively corrected by using ionospheric models [22].

Given these considerations, let us now consider the channel e�ects caused
by satellite-station line-of-sight (LOS) dynamics. Speci�cally, the channel
introduces a delay 𝜏𝐿𝑂𝑆 (𝑡), and the transmitted signal 𝑠𝑅𝐹 (𝑡) is corrupted
by additive white Gaussian noise (AWGN). Therefore, the received signal
can be modeled as

𝑟𝑅𝐹 (𝑡) = 𝐴(𝑡)𝑠𝑅𝐹
(
𝑡 − 𝜏𝐿𝑂𝑆 (𝑡)

) + 𝜂𝑅𝐹 (𝑡) , (7)

4The tropospheric delay can be considered constant for the same obliquity factor, pro-
vided that the wet and hydrostatic components of the tropospheric medium do not vary
signi�cantly [20, Chapter 5].
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where 𝜂𝑅𝐹 (𝑡) is a real, zero-mean, and white Gaussian noise with two-sided
power spectrum density equals to 𝑁0/2 ∈ R+, and 𝐴 (𝑡) ∈ R models the
received signal amplitude variations due to the antenna gain, free-space path
loss, and other attenuation factors. By substituting (1) into (7), we have

𝑟𝑅𝐹 (𝑡) = 𝐴(𝑡)
√︂

2𝐸

𝑇
cos

(
2𝜋 𝑓𝑅𝐹

(
𝑡 − 𝜏𝐿𝑂𝑆 (𝑡)

) +Φ(
𝑡 − 𝜏𝐿𝑂𝑆 (𝑡) ,A

))
+ 𝜂𝑅𝐹 (𝑡) .

(8)

By observing the LOS phase evolution from an initial time instant 𝑡0, it
follows that

𝑟𝑅𝐹 (𝑡) = 𝐴(𝑡)
√︂

2𝐸

𝑇
cos

(
2𝜋 𝑓𝑅𝐹

(
𝑡 − 𝜏𝐿𝑂𝑆 (𝑡0) −

∫ 𝑡

𝑡0

𝜕𝜏𝐿𝑂𝑆 (𝑡)
𝜕𝑡

𝑑𝑡

)

+Φ
(
𝑡 − 𝜏𝐿𝑂𝑆 (𝑡) ,A

))
+ 𝜂𝑅𝐹 (𝑡)

= 𝐴(𝑡)
√︂

2𝐸

𝑇
cos

(
2𝜋 𝑓𝑅𝐹 𝑡 + 𝜙𝐿𝑂𝑆 (𝑡0) + 2𝜋

∫ 𝑡

𝑡0

𝑓𝐷 (𝑡)𝑑𝑡+

+Φ
(
𝑡 − 𝜏𝐿𝑂𝑆 (𝑡) ,A

))
+ 𝜂𝑅𝐹 (𝑡) , (9)

where

𝑓𝐷 (𝑡) = − 𝑓𝑅𝐹 𝜕𝜏𝐿𝑂𝑆 (𝑡)
𝜕𝑡

(10)

is the Doppler frequency shift and 𝜙𝐿𝑂𝑆 (𝑡0) = −2𝜋 𝑓𝑅𝐹𝜏𝐿𝑂𝑆 (𝑡0). Finally,

𝑟𝑅𝐹 (𝑡) = 𝐴(𝑡)
√︂

2𝐸

𝑇
cos

(
2𝜋 𝑓𝑅𝐹 𝑡 + 𝜙𝐿𝑂𝑆 (𝑡) +Φ

(
𝑡 − 𝜏𝐿𝑂𝑆 (𝑡) ,A

))
+ 𝜂𝑅𝐹 (𝑡) ,

(11)

where

𝜙𝐿𝑂𝑆 (𝑡) = 𝜙𝐿𝑂𝑆 (𝑡0) + 2𝜋
∫ 𝑡

𝑡0

𝑓𝐷 (𝑡)𝑑𝑡. (12)

Figure 1 shows a complete block diagram illustrating the assumed channel
model.
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𝑠𝑅𝐹 (𝑡) Delay
𝜏𝐿𝑂𝑆 (𝑡) +

𝜂𝑅𝐹 (𝑡)

𝑟𝑅𝐹 (𝑡)

Figure 1: Channel model.

4. AFSK Demodulator

The transmitted signal is received by a set of antennas and delivered to
the RF front-end module, where an analogue preprocessing step is performed.
The received signal is shifted to an intermediate frequency and then passes
through an automatic gain control (AGC) that adjusts its amplitude to the
full-scale level of the analog-to-digital converter (ADC). This signal is then
sampled by the ADC at a rate of 𝑓𝑠 = 1/𝑇𝑠 and subsequently downconverted
to baseband in digital means, yielding

𝑟 [𝑛] = 𝑠̃ [𝑛] 𝑒 𝑗𝜙𝐿𝑂𝑆 [𝑛] + 𝜂 [𝑛] , (13)

where

𝑠̃ [𝑛] = 𝑠 (𝑛𝑇𝑠 − 𝜏𝐿𝑂𝑆 [𝑛] ) ∈ C (14)

characterizes the discrete-time version of the transmitted AFSK complex en-
velope. Here, 𝑛 ∈ N+ represents the sampling instants and the tilde notation
indicates that the LOS e�ects have not been corrected yet. In addition,
𝜏𝐿𝑂𝑆 [𝑛] and 𝜙𝐿𝑂𝑆 [𝑛] model the discrete-time delay in seconds and phase
shift in radians, respectively. The distortions caused by each downcoversion
step, as well as the quantization, are assumed to be negligible. Therefore, it
is also justi�ed to assume that the remaining additive noise of the received
signal 𝜂 [𝑛] ∼ CN (0, 2𝑁0𝐵/𝑇𝑠) is a zero-mean complex Gaussian noise with
power spectral density of 𝑁0/𝑇𝑠 within [−𝐵, 𝐵] Hz, i.e., the bandwidth where
the baseband signal is allocated.

The proposed AFSK demodulator is divided in two main parts: The
Viterbi algorithm which performs the maximum likelihood sequence detec-
tion (MLSD) for the bits, and a synchronization system based on a KF that is
able to generate precise estimates of the LOS dynamics. Both parts interact
mutually in a DD manner, thus providing signi�cantly enhanced performance
if compared with noncoherent bit detection, as shown in Section 5.
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4.1. Line-of-sight dynamics correction

In order to perform coherent bit detection, it is necessary to �rst correct
the timing delay and phase shift caused by the LOS dynamics on the received
signal given by (13). Suppose momentarily that estimates of 𝜙𝐿𝑂𝑆 [𝑛] and
𝜏𝐿𝑂𝑆 [𝑛] are available at the sampling time instant 𝑛. The KF algorithm,
that provides such estimates, is detailed in Section 4.3.

Firstly, the LOS phase shift is corrected by mixing the received signal with
samples of a carrier replica, i.e., a complex exponential using the estimated
carrier phase, 𝜙𝐿𝑂𝑆 [𝑛]. Here, the hat notation refers to estimates. Secondly,
the timing delay correction is performed. However, an all-digital demodulator
cannot directly act at the sampling instant of the ADC as it operates in free-
running mode. Therefore, it is necessary to use estimates of the timing
delay 𝜏𝐿𝑂𝑆 [𝑛] to generate the interpolants, 𝑟 [𝑚]. Note that the time index
changed here to explicitly denote the interpolation step. Nevertheless, both
time indices have the same sampling time. There are many interpolator
architectures that could be used to perform this task. In this case, we assume
that an interpolator with a Farrow architecture is used [23].

Thus, the received signal given by (13), after the phase shift and the
timing delay corrections, can be written as

𝑟 [𝑚] = 𝑠 [𝑚] 𝑒 𝑗𝜀𝜙 [𝑚] + 𝜂 [𝑚] , (15)

where

𝑠 [𝑚] = 𝑠 (𝑚𝑇𝑠) = 𝑒 𝑗Φ[𝑚,A] (16)

is the corrected discrete-time complex envelope, with

Φ [𝑚,A] = 𝜃 [𝑘] + 𝜃 [𝑚 − 𝑘𝑁, 𝛼̂ [𝑘]] (17)

being the sampled version of Φ (𝑡,A),
𝜀𝜙 [𝑚] = 𝜙𝐿𝑂𝑆

(
𝑚𝑇𝑠 + 𝜏𝐿𝑂𝑆 [𝑚]

) − 𝜙𝐿𝑂𝑆 (𝑚𝑇𝑠 + 𝜏𝐿𝑂𝑆 [𝑚] ) (18)

denotes the carrier phase residual, and

𝜂 [𝑚] = 𝜂 (𝑚𝑇𝑠 + 𝜏𝐿𝑂𝑆 [𝑚] )𝑒− 𝑗𝜙𝐿𝑂𝑆

(
𝑚𝑇𝑠+𝜏𝐿𝑂𝑆 [𝑚]

)
(19)

represents a Gaussian noise with its power spectral density shifted. It is
important to note that even though the noise has been shifted, its �rst- and
second-order moments do not change as the stochastic process is assumed to
be weak-sense stationary [24].
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4.2. The Viterbi detector

The LOS-corrected signal, given by (15), passes through a �lter bank
composed by a group of matched �lters that correlates it with the possible
transmitted complex envelopes. Such correlation is used as a metric by the
Viterbi algorithm to perform the maximum likelihood sequence detection
(MLSD). The algorithm searches through the trellis for the sequence whose
correlation is maximum [18, 25]. Therefore, let us de�ne

𝑔 [𝑚] = 𝑟 [𝑚] ∗ ℎ𝑀𝐹 [𝑚]

=
𝑚∑︁

𝑖=𝑚−𝑁+1
𝑟 [𝑖] 𝑒− 𝑗Φ[𝑖+𝑁−1−𝑚,A] . (20)

as one of the outputs of the �lter bank, where

ℎ𝑀𝐹 [𝑚] =
{
𝑒− 𝑗Φ[𝑁−1−𝑚,A] for 0 ≤ 𝑚 ≤ 𝑁 − 1
0 otherwise

(21)

is its impulse response and ∗ is the convolution operator.
At the demodulator, we use the notation 𝛼̂ [𝑘] to indicate that it is the

detected symbol, which may or may not di�er from the transmitted one,
𝛼 [𝑘]. Therefore,

𝜃 [𝑘] = 𝜋ℎ
𝑘−1∑︁
𝑖=0

𝛼̂ [𝑖] ∈ B (22)

denotes the estimated terminal phase of the transmitted signal, i.e, the phase
memory.

It is possible to notice that decimating at 𝑁 (𝑘 + 1) − 1 and taking the
real part of (20) yields the correlation metric between the 𝑘th transmitted
and received symbol [15, Section 9.2]. In other words, the real part of the
statistic

𝑔
(
𝛼̂ [𝑘] , 𝜃 [𝑘]

)
= 𝑔 [𝑚]

����
𝑚=𝑁 (𝑘+1)−1

=
𝑁 (𝑘+1)−1∑︁
𝑖=𝑘𝑁

𝑟 [𝑖] 𝑒− 𝑗Φ[𝑖−𝑘𝑁,A] (23)

corresponds to the 𝑘th transition metric for the symbol 𝛼̂ [𝑘], during the
interval 𝑘𝑁 ≤ 𝑚 ≤ 𝑁 (𝑘 + 1) − 1. We can rewrite (23) as

𝑔
(
𝛼̂ [𝑘] , 𝜃 [𝑘]

)
=
𝑁 (𝑘+1)−1∑︁
𝑖=𝑘𝑁

𝑟 [𝑖] 𝑒− 𝑗Φ[𝑖−𝑘𝑁,A]
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=
𝑁 (𝑘+1)−1∑︁
𝑖=𝑘𝑁

𝑟 [𝑖] 𝑒− 𝑗 (𝜃 [𝑘]+𝜃 [𝑖−𝑘𝑁,𝛼̂[𝑘]])

= 𝑒− 𝑗𝜃 [𝑘]
𝑁 (𝑘+1)−1∑︁
𝑖=𝑘𝑁

𝑟 [𝑖] 𝑒− 𝑗𝜃 [𝑖−𝑘𝑁,𝛼̂[𝑘]]

= 𝑒− 𝑗𝜃 [𝑘]𝑐 (𝛼̂ [𝑘]) . (24)

The �rst term of (24), 𝑒− 𝑗𝜃 [𝑘] , refers to the phase memory of the AFSK signal,
which depends on the entire sequence of the previously detected symbols (cf.
(22)). The second term of (24),

𝑐 (𝛼̂ [𝑘]) = 𝑐 [𝑚]
����
𝑚=𝑁 (𝑘+1)−1

=
𝑁 (𝑘+1)−1∑︁
𝑖=𝑘𝑁

𝑟 [𝑖] 𝑒− 𝑗𝜃 [𝑖−𝑘𝑁,𝛼̂[𝑘]] , (25)

is obtained after passing 𝑟 [𝑚] through a �lter bank whose impulse responses
depend on the possible transmitted symbol 𝛼̂ [𝑘] ∈ {−1, 1} and are given by

ℎ𝐹𝐵 [𝑚] =
{
𝑒− 𝑗𝜃 [𝑁−1−𝑚,𝛼̂[𝑘]] if 0 ≤ 𝑚 ≤ 𝑁 − 1
0 otherwise

. (26)

Note that, instead of using a bank with 24 �lters (#B = 12 terminal states
with two possible symbols each) to yield 𝑔 [𝑚], one can use just two �lters to
yield 𝑐 [𝑚], as shown in (25). The statistic 𝑐 (𝛼̂ [𝑘]) is generated by decimat-
ing the �lter bank output at the instant 𝑁 (𝑘 + 1) − 1. After this stage, the
demodulator operates at the symbol rate. Afterwards, 𝑐 (𝛼̂ [𝑘]) is multiplied
by the phase memory inherent of the continuous phase modulation, as shown
in (24). However, since 𝜃 [𝑘] ∈ B is unknown to the demodulator, a metric
with all terminal phases is computed and delivered to the Viterbi algorithm,
which recovers the memory 𝜃 [𝑘] and detects the bits. Mathematically, the
metric

G [𝑘] = c [𝑘] 𝛃⊤ ∈ C2×12 (27)

is the input of the Viterbi algorithm, where

c [𝑘] ≜ [
𝑐(𝛼̂ [𝑘] = −1) 𝑐(𝛼̂ [𝑘] = 1)]⊤ ∈ C2 (28)

is the output of the �lter bank, and

𝛃 ≜
[
𝑒− 𝑗 𝛽0 𝑒− 𝑗 𝛽1 · · · 𝑒− 𝑗 𝛽11

]⊤ ∈ C12 (29)
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is a vector of complex exponentials whose phase argument is an element
of the set B (see (6)). The Viterbi algorithm takes the real part of G [𝑘]
and searches through the trellis for the path whose likelihood function is
maximum (i.e., the survivor path), thus detecting the transmitted bits, 𝛼̂ [𝑘]
[25].

4.3. LOS phase and timing estimation using a Kalman �lter (KF)

The problem of recursive estimation of the phase shift and timing de-
lay caused by the LOS dynamics can be tackled by implementing classical
solutions based on phase-locked loops and frequency-locked loops [26], or
Bayesian estimators [27], such as the standard KF [28] and its variants5.

The main advantage of using Bayesian estimators for synchronization
are their �exibility to incorporate other impairments, such as ionospheric
scintillation [31, 32, 33] and multipath [34], as well as to adaptively change
its �lter bandwidth based on the SNR of its measurements. Therefore, this
class of carrier phase tracking systems is very suitable for next generation
software-de�ned radio (SDR) receivers [35] and [36]. With that, a KF to
operate in DD mode with the Viterbi algorithm is presented hereafter.

4.3.1. Carrier phase LOS dynamics model

As presented in [31, Section 2.4], the relative range and velocity between
the satellite and the ground station can be modeled by employing a nth-order
state-space Wiener model. The input vector of this state-space model is the
driving Gaussian noise of the Wiener process, denoted as 𝜉𝑊 (𝑡) ∼ N (

0, 𝜎2
𝑊

)
.

If 𝑤𝑊 (𝑡) ∈ R is a Wiener process driven by 𝜉𝑊 (𝑡), then ¤𝑤𝑊 (𝑡) = 𝜉𝑊 (𝑡) and
𝑤𝑊 (𝑡 + 𝜏) − 𝑤𝑊 (𝑡) ∼ N (

0, 𝜏𝜎2
𝑊

)
.

The reader should note that, the higher the order of the model, the more
accurate the representation of the carrier phase LOS dynamics. In this work,
a third-order Wiener model is considered, which is su�cient to capture the

5The most prominent variants are the extended KF, the unscented KF [29], and the
Cubature KF [30].
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main e�ects for CubeSats applications. Therefore, we have

¤𝜙𝐿𝑂𝑆 (𝑡)
¤𝑓𝐷 (𝑡)
¥𝑓𝐷 (𝑡)

︸       ︷︷       ︸
¤x(𝑡)

=


0 2𝜋 0
0 0 1
0 0 0

︸        ︷︷        ︸
F𝑊


𝜙𝐿𝑂𝑆 (𝑡)
𝑓𝐷 (𝑡)¤𝑓𝐷 (𝑡)

︸       ︷︷       ︸
x(𝑡)

+

𝜉𝜙 (𝑡)
𝜉 𝑓𝐷 (𝑡)
𝜉 ¤𝑓𝐷 (𝑡)

︸    ︷︷    ︸
ξ(𝑡)

= F𝑊x (𝑡) + ξ (𝑡) , (30)

where x(𝑡) =
[
𝜙𝐿𝑂𝑆 (𝑡), 𝑓𝐷 (𝑡) , ¤𝑓𝐷 (𝑡)

]⊤
is the continuous-time state vari-

able, F𝑊 is known as the state transition matrix, and the vector ξ (𝑡) =[
𝜉𝜙 (𝑡) , 𝜉 𝑓𝐷 (𝑡) , 𝜉 ¤𝑓𝐷 (𝑡)

]⊤ ∼ N (
0,Qξ

)
is a continuous-time multivariate white

Gaussian noise that captures all uncertainties in the relative movement be-
tween the ground station and the satellite as well as the phase drift caused
by clock aging. Therefore, in a perfect scenario without uncertainties, ξ (𝑡)
would be equal to 03×1 and the carrier LOS phase evolution would be given
by F𝑊x (𝑡).

Thus, the cross-covariance matrix of ξ (𝑡) for two di�erent time instants
𝑡1 and 𝑡2 can be written as

E
{
ξ (𝑡1) ξ⊤ (𝑡2)

}
=

{
Qξ = diag

(
𝜎2
1 , 𝜎

2
2 , 𝜎

2
3

)
if 𝑡1 = 𝑡2

03×3 otherwise
, (31)

where E{·} and diag (·) is the expectation and diagonalization operator, and
𝜎2
1 , 𝜎

2
2 , and 𝜎

2
3 denote the variance of 𝜉𝜙 (𝑡), 𝜉 𝑓𝐷 (𝑡), and 𝜉 ¤𝑓𝐷 (𝑡), respectively.

The solution for (30), according to [31, Appendix A2], reads

x (𝑡) = 𝑒(𝑡−𝑡0)F𝑊x (𝑡0) +
∫ 𝑡

𝑡0

𝑒(𝑡−𝜏)F𝑊ξ (𝜏) d𝜏. (32)

By using the Taylor series expansion, 𝑒(𝑡−𝜏)F𝑊 can be rewritten as follows

A (𝑡 − 𝜏) ≜ 𝑒(𝑡−𝜏)F𝑊 =
∞∑︁
𝑖=0

( (𝑡 − 𝜏) F𝑊) 𝑖
𝑖!

. (33)

Therefore, noticing that all elements of this sum for 𝑖 > 2 are equal to 03×3,
it is possible to write

A (𝑡 − 𝜏) =

1 0 0
0 1 0
0 0 1


+


0 2𝜋 (𝑡 − 𝜏) 0
0 0 (𝑡 − 𝜏)
0 0 0


+


0 0 𝜋 (𝑡 − 𝜏)2
0 0 0
0 0 0


14



=


1 2𝜋 (𝑡 − 𝜏) 𝜋 (𝑡 − 𝜏)2
0 1 (𝑡 − 𝜏)
0 0 1


. (34)

Furthermore, by substituting (34) into the �rst and second terms on the
right side of (32), and considering time discretization such that 𝑡 = 𝑘𝑇 and
𝑡0 = (𝑘 − 1) 𝑇 , we get

x [𝑘] =

1 2𝜋𝑇 𝜋𝑇2

0 1 𝑇
0 0 1

︸              ︷︷              ︸
F

x [𝑘 − 1] +
∫ 𝑘𝑇

(𝑘−1)𝑇
A(𝑘𝑇 − 𝜏)ξ (𝜏) d𝜏

︸                             ︷︷                             ︸
w[𝑘]

= Fx [𝑘 − 1] + w[𝑘], (35)

where F is the discrete-time state transition matrix and w [𝑘] ∼ N (
0,Q

)
is

a multivariate Gaussian noise whose covariance matrix can be calculated as

Q = E
{
w[𝑘]w⊤ [𝑘]}

= E
{ ∫ 𝑘𝑇

(𝑘−1)𝑇
A(𝑘𝑇 − 𝜏1)ξ (𝑘𝑇 − 𝜏1) d𝜏1

∫ 𝑘𝑇

(𝑘−1)𝑇
ξ⊤ (𝑘𝑇 − 𝜏2)A⊤(𝑘𝑇 − 𝜏2) d𝜏2

}

=
∬ 𝑘𝑇

(𝑘−1)𝑇
A(𝑘𝑇 − 𝜏1)E

{
ξ (𝑘𝑇 − 𝜏1) ξ⊤ (𝑘𝑇 − 𝜏2)

}
A⊤(𝑘𝑇 − 𝜏2) d𝜏1 d𝜏2.

(36)

Now, recalling (31) and that the values of the continuous-time covariance
matrix are time-invariant, one can assume that 𝑘 = 1 in (36) without loss of
generality. Hence, we have

Q =
∬ 𝑇

0
A(𝑇 − 𝜏1)Qξ𝛿 (𝜏1 − 𝜏2)A⊤(𝑇 − 𝜏2) d𝜏1 d𝜏2, (37)

where 𝛿 (𝑡) is the Dirac delta function.
By using the iterated integral technique [37, Section 15.2] and the prop-

erties of the Dirac delta function for 𝜏1 = 𝜏2 = 𝜏, the equation (37) can be
rewritten as

Q =
∫ 𝑇

0
A (𝑇 − 𝜏)QξA

⊤(𝑇 − 𝜏) d𝜏. (38)
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Note that w [𝑘] ∼ N (
0,Q

)
is the discrete-time counterpart of ξ (𝑡) ∼ N (

0,Qξ
)

(cf. equations (35) and (30)). That is, w [𝑘] models the uncertainties that
disturb the carrier LOS phase measurements in the discrete-time state-space
Wiener model, where its covariance matrix is given in terms of the covariance
of ξ (𝑡) as shown in (38). Evaluating this integral using MATLAB's symbolic
math package, it is possible to obtain:

Q = 𝜎2
1


𝑇 0 0
0 0 0
0 0 0


+ 𝜎2

2


4𝑇3𝜋2

3 𝜋𝑇2 0
𝜋𝑇2 𝑇 0
0 0 0


+ 𝜎2

3


𝜋2𝑇5

5
𝜋𝑇4

4
𝜋𝑇3

3
𝜋𝑇4

4
𝑇3

3
𝑇2

2
𝜋𝑇3

3
𝑇2

2 𝑇


. (39)

The covariance matrix elements presented here are slightly di�erent if com-
pared with the results shown in [31, Equation 2.60], since the phase in this
work is modeled in radians, instead of cycles. Hence, from (39), it is easy
to notice that characterizing the uncertainties that disturbs the carrier LOS
phase measurements means de�ning the variances 𝜎2

1 , 𝜎
2
2 and 𝜎2

3 .

4.3.2. Measurement model

Assuming correct symbol detection provided by the Viterbi algorithm,
i.e., 𝛼̂ [𝑘] = 𝛼 [𝑘], the residual phase of the �ltered signal, as given by (24),
can be used as an input to an estimator to perform carrier phase recovery.
In order to illustrate this, we may further elaborate (24), recalling (15), (16),
(17), and (19) as

𝑔
(
𝛼̂ [𝑘] , 𝜃 [𝑘]

)
= 𝑒− 𝑗𝜃 [𝑘]

𝑁 (𝑘+1)−1∑︁
𝑖=𝑘𝑁

𝑟 [𝑖] 𝑒− 𝑗𝜃 [𝑖−𝑘𝑁,𝛼̂[𝑘]]

= 𝑒− 𝑗𝜃 [𝑘]
𝑁 (𝑘+1)−1∑︁
𝑖=𝑘𝑁

(
𝑠 [𝑖] 𝑒 𝑗𝜀𝜙 [𝑖] + 𝜂 [𝑖]

)
𝑒− 𝑗𝜃 [𝑖−𝑘𝑁,𝛼̂[𝑘]]

= 𝑒− 𝑗𝜃 [𝑘]
𝑁 (𝑘+1)−1∑︁
𝑖=𝑘𝑁

(
𝑒 𝑗 (𝜃 [𝑘]+𝜃 [𝑖−𝑘𝑁,𝛼[𝑘]]+𝜀𝜙 [𝑖]) + 𝜂 [𝑖]

)
𝑒− 𝑗𝜃 [𝑖−𝑘𝑁,𝛼̂[𝑘]]

=
𝑁 (𝑘+1)−1∑︁
𝑖=𝑘𝑁

(
𝑒 𝑗𝜀𝜙 [𝑖] + 𝜂 [𝑖] 𝑒− 𝑗 (𝜃 [𝑘]+𝜃 [𝑖−𝑘𝑁,𝛼̂[𝑘]])

)

=
𝑁 (𝑘+1)−1∑︁
𝑖=𝑘𝑁

𝑒 𝑗𝜀𝜙 [𝑖] + 𝜂 [𝑘] , (40)
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where

𝜂 [𝑘] =
𝑁 (𝑘+1)−1∑︁
𝑖=𝑘𝑁

𝜂 [𝑖]𝑒− 𝑗 (𝜃 [𝑘]+𝜃 [𝑖−𝑘𝑁,𝛼̂[𝑘]]) ∼ CN
(
0, 𝑁

2𝑁0𝐵

𝑇𝑠

)
(41)

is a complex Gaussian random variable. Notably, the phase shifts introduced
by the matched �lter to the original random variable 𝜂 [𝑖] do not alter its
statistics [24].

Taking the argument of (40), using a four-quadrant arctangent discrimi-
nator (atan2 {·}) [38, Appendix 1], we get

𝜄 [𝑘] = atan2
{
𝑔

(
𝛼̂ [𝑘] , 𝜃 [𝑘]

)}
. (42)

Here, 𝜄 [𝑘], known as innovation, is an error signal that will be used sub-
sequently by the KF algorithm to provide estimates of the carrier phase and
Doppler shift and drift. In steady-state conditions, assuming that the power
spectral density of the additive thermal noise is su�ciently low, the demod-
ulator ensures that the residual phases 𝜀𝜙 [𝑖] present small values. Hence,
sin

(
𝜀𝜙 [𝑖]

) ≈ 𝜀𝜙 [𝑖] and cos
(
𝜀𝜙 [𝑖]

) ≈ 1. By substituting these approximations
into (42), one can linearize the innovation as

𝜄 [𝑘] ≈ Im {𝜂 [𝑘]} +∑𝑁 (𝑘+1)−1
𝑖=𝑘𝑁 𝜀𝜙 [𝑖]

Re {𝜂 [𝑘]} + 𝑁 ∼ N
(
1

𝑁

𝑁 (𝑘+1)−1∑︁
𝑖=𝑘𝑁

𝜀𝜙 [𝑖], 𝑁0𝐵

𝑁𝑇𝑠

)
. (43)

With that, it is possible to observe that the innovation statistics carry
relevant information regarding the amount of error present on the estimates.
Therefore, for small values of 𝜀𝜙 [𝑚] and su�ciently high values of 𝑁, the
usage of the innovations by a linear estimator is justi�ed.

4.3.3. Bayesian carrier phase tracking system

Now, let us summarize the state-space and measurement models devel-
oped in Sections 4.3.1 and 4.3.2 as

x [𝑘] = Fx [𝑘 − 1] + w [𝑘 − 1] (44)

𝜙𝐿𝑂𝑆 [𝑘] = Hx [𝑘] + 𝑣 [𝑘] , (45)

where x [𝑘] = [
𝜙𝐿𝑂𝑆 [𝑘] , 𝑓𝐷 [𝑘] , ¤𝑓𝐷 [𝑘]

]⊤
denotes the state space vector,

F =


1 2𝜋𝑇 𝜋𝑇2

0 1 𝑇
0 0 1


(46)
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represents the state transition matrix and w [𝑘 − 1] ∼ N (0,Q) indicates the
state noises vector, whose covariance matrix is given by (39). In addition,
H = [1, 0, 0] characterizes the measurement transition matrix and 𝑣 [𝑘] ∼
N (

0, 𝜎2
𝑣

)
is the measurement noise.

Thus, Algorithm 1 shows the recursive KF equations that provide the
optimal linear state and error covariance matrix estimates, given by [27]

x̂ [𝑘 | 𝑘 − 1] = E
{
x [𝑘] | 𝜄 [𝑘 − 1] , 𝜄 [𝑘 − 2] , . . .}, (47)

P̂ [𝑘 | 𝑘 − 1] = E
{∥x [𝑘] − x̂ [𝑘 | 𝑘 − 1] ∥2}. (48)

The notation [𝑘 | 𝑘 − 1] denotes a sample at an instant 𝑘 conditioned to all
innovation samples from the initialization up to an instant 𝑘 − 1 and ∥·∥
represents the 𝐿2-norm operator.

Algorithm 1: Kalman Filter Algorithm

Input: x̂ [1 | 0] , P̂ [1 | 0] , 𝜄 [𝑘] ,F,Q,H, 𝜎2
𝑣

Output: x̂[𝑘 | 𝑘 − 1] ∀ 𝑘 ∈ Z
// Update step

1 if 𝑘 > 𝐾 then

2 K [𝑘] ← P̂ [𝑘 | 𝑘 − 1]H𝑇 (HP̂ [𝑘 | 𝑘 − 1]H𝑇 + 𝜎2
𝑣 )−1

3 x̂ [𝑘 | 𝑘] ← x̂ [𝑘 | 𝑘 − 1] +K[𝑘]𝜄 [𝑘]
4 P̂ [𝑘 | 𝑘] ← P̂ [𝑘 | 𝑘 − 1] −K [𝑘]HP̂ [𝑘 | 𝑘 − 1]
5 else
6 x̂ [𝑘 | 𝑘] ← x̂ [𝑘 | 𝑘 − 1]
7 P̂ [𝑘 | 𝑘] ← P̂ [𝑘 | 𝑘 − 1]
// Project ahead

8 x̂ [𝑘 + 1 | 𝑘] ← Fx̂ [𝑘 | 𝑘]
9 P̂ [𝑘 + 1 | 𝑘] ← FP̂ [𝑘 | 𝑘] F𝑇 +Q
10 𝑘 ← 𝑘 + 1

Furthermore, some caveats need to be discussed. It is well known that
the Veterbi algorithm inserts a delay 𝐾 to compute the survivor path [18,
Section 8.2]. Therefore, while 𝑘 ≤ 𝐾, the KF just projects the state variable
ahead using the line 8 since the values of the innovation are not available
yet. This approximation assumes that, during this initial stage, it is possible
to describe the evolution of the states in a deterministic way with F. This is
an imperfect approximation, but it is still plausible provided that the initial
estimates are reliable enough and that 𝐾 is a few samples. Once the �rst
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survivor is computed, the Viterbi algorithm provides 𝑔
(
𝛼̂ [𝑘] , 𝜃 [𝑘]

)
, from

which the innovation 𝜄 [𝑘] is calculated. Note that, for the KF to estimate
the LOS carrier phase appropriately, the Viterbi algorithm must provide the

correct statistics 𝑔
(
𝛼̂ [𝑘] , 𝜃 [𝑘]

)
. Since the Viterbi-KF system forms a DD

closed loop, a decreasing signal-to-noise ratio is expected to degrade the bit
detection performance, which in turn degrades the phase estimation perfor-
mance as the Viterbi algorithm provides wrong statistics that compromises
the Gaussianity assumption of the noise and the linear approximation of the
phase discriminator. In this case, a KF is not a feasible estimator anymore,
and other nonlinear estimators, such as the particle �lter [27], should be con-
sidered instead. Additionally, during the acquisition time6, the assumption of
a Gaussian distribution for 𝜀𝜙 [𝑖] may not hold. Consequently, the optimality
of the KF estimates is not guaranteed during the acquisition. If the KF is
initialized with highly imprecise orbital estimates, it may fail to converge,
resulting in signi�cant degradation of the demodulator's performance. How-
ever, when initialized with su�ciently accurate estimates, the KF is highly
likely to converge e�ciently.

Finally, assuming that, within a symbol period 𝑇 , the LOS phase samples
can be approximated as a Taylor series expansion truncated at the second
order, we have

𝜙𝐿𝑂𝑆 [𝑛] =𝜙𝐿𝑂𝑆 [𝑘 | 𝑘 − 1]
+ 2𝜋 𝑓𝐷 [𝑘 | 𝑘 − 1] (𝑛 − 𝑘𝑁)𝑇𝑠
+ 𝜋 ¤̂𝑓𝐷 [𝑘 | 𝑘 − 1] ((𝑛 − 𝑘𝑁)𝑇𝑠)2 , (49)

where

𝜙𝐿𝑂𝑆 [1 | 0] ≜ −
2𝜋 𝑓𝑅𝐹𝜌𝑠,𝑔

𝑐
(50)

is the initial phase estimate [39], which is computed only once during the
acquisition time by using the true range between the satellite and the ground
station, 𝜌𝑠,𝑔. Here, the symbol 𝑐 ≜ 299 106 m/s denotes the speed of light.

The phase estimates are used by a carrier generator to produce carrier
replica samples which are then multiplied to the received signal (13), as

6The acquisition time occurs when the system starts or when it tries to recover the lock
again.
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described in Section 4.1. The output of this system is given by

𝑑 [𝑛] = 𝑒− 𝑗𝜙𝐿𝑂𝑆 [𝑛] . (51)

In addition, the delay estimates, that input the Farrow interpolator to correct
the LOS delay, are also obtained from 𝜙𝐿𝑂𝑆 [𝑛] as follows

𝜏𝐿𝑂𝑆 [𝑛] = −𝜙𝐿𝑂𝑆 [𝑛]
2𝜋 𝑓𝑅𝐹

. (52)

The full demodulator architecture is represented in Figure 2.

𝑟 [𝑛] 𝑟 [𝑛] Farrow
Interpolator

𝑟 [𝑚]
ℎ𝐹𝐵 [𝑚] •

����
𝑚=𝑁 (𝑘+1)

c [𝑘]
𝛃⊤

Viterbi
algorithm

G [𝑘]

𝛼̂ [𝑘]

𝑔
(
𝛼̂ [𝑘] , 𝜃 [𝑘]

)
Kalman
filter

𝜏𝐿𝑂𝑆 [𝑘]
Carrier
generator 𝜙𝐿𝑂𝑆 [𝑘]

𝑑 [𝑛]

Figure 2: Complete AFSK demodulator architecture, including the Viterbi detector and
the KF algorithm.

5. Numerical results

In this section, performance results, obtained through realistic computer
simulation, of the proposed demodulator are presented and discussed. The
system performance is assessed in terms of the BER for di�erent signal-
to-noise ratio (SNR) scenarios, with LOS phase and timing impairments
computed from real CubeSat orbits. The quality of the KF estimates are
analyzed based on a MRMSE statistic, with a window size corresponding
to the amount of samples within 3 seconds of simulation time (3600 symbol
periods). The reasoning behind choosing a moving window statistic metric
instead of a static full window statistic is related to the possibility of assessing
the quality of the KF estimates over time of each simulated CubeSat LOS
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dynamics scenarios. In addition, we also present the initial convergence time
of the trace of the KF error covariance matrix estimates, as a metric of
reliability of the state estimates. In [40], the authors made the MATLAB©

source code of the model used to generate the results in this section freely
available and open-source to the public.

The following parameters were used to simulate an AFSK uplink com-
munication scenario for CubeSats:

� General parameters

� Transmit carrier frequency, 𝑓𝑅𝐹 = 149 MHz.

� Bit rate, 𝑅 = 1.2kbps.

� Sampling frequency, 𝑓𝑠 = 480 kHz.

� Di�erence between the frequencies used to modulate the data,
Δ 𝑓 = 1000 Hz.

� Modulation index, ℎ = 2Δ 𝑓 /𝑅 = 5/6.
� Viterbi detector and KF parameters

� Viterbi detector delay, 𝐾 = 25

� The state noise variances modeling the uncertainty of the LOS
dynamics and the clock drift were chosen as 𝜎2

1 = 𝜎2
2 = 0 and

𝜎2
3 = 0.01. Hence, we assume that the clock drift is negligible and

that only the uncertainty about the LOS dynamics is relevant. For
further details on the tuning of the state-space noise covariance
matrix, please refer to [31, Section 2.4.1] and [41].

� Following the idea of using common SNR estimators [42] provided
by standard receivers, as discussed in [41], and assuming that the
power of the received signal is normalized to one, one can use the

estimate of the measurement noise variance as 𝜎̂2
𝑣 = 10

−𝑆𝑁𝑅𝑑𝐵
10 . In

the following simulations it is assumed that the ground base sta-
tion is automatically adapting the power level of the transmitted
signal, in order to �x the SNR level throughout the simulation
time.

� The initial state x̂ [1 | 0] = [
𝜙𝐿𝑂𝑆 [1 | 0] , 𝑓𝐷 [1 | 0] , ¤̂𝑓𝐷 [1 | 0]

]⊤
can be derived from the satellite-station true range provided by
the model. On the one hand, the LOS phase is computed as (50).
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On the other hand, the initial Doppler shift and drift are com-
puted by employing numerical di�erentiation techniques7. The
reader should note that, at the KF initialization, 𝜙𝐿𝑂𝑆 [1 | 0] is
unwrapped and directly related to relative distance between the
satellite and the ground station (cf. (50)). However, once the KF
is operating, the estimated LOS phase is wrapped in [−𝜋, 𝜋] due
to the phase discriminator. If cycle slips occurs due to a sudden
and a strong disturbance or if the initial orbital estimate is not
accurate enough, the phase wrapping process makes 𝜏𝐿𝑂𝑆 [𝑛] bi-
ased in an integer number of cycles. Concerning the initial range
accuracy, the satellite orbital model used to generate 𝜌𝑠,𝑔 is the
SGP4 algorithm [16]. For our system con�guration, this algorithm
needs to be accurate enough so that the initial range error is lower
than 608 meters. Otherwise, the integer factor of the phase ambi-
guity makes 𝜏𝐿𝑂𝑆 [𝑛] biased more than one sample, thus causing
a subtle but considerable mismatch in the �lter bank.

� The initial covariance error matrix P [1 | 0] is con�gured as a di-
agonal matrix with element values

{
𝜋2/3, (0.1)2 /12, (0.01)2 /12},

respectively. These values were chosen as the variances of the
uniform distributions 𝜙𝐿𝑂𝑆 [1 | 0] ∼ U (−𝜋, 𝜋) rad, 𝑓𝐷 [1 | 0] ∼
U (−0.05, 0.05) Hz, and ¤̂𝑓𝐷 [1 | 0] ∼ U (−0.005, 0.005) Hz/s for ini-
tial phase, Doppler shift, and Doppler drift, respectively, which
corresponds to the assumed maximum errors related to the SGP4
orbit estimation. It is important to comment that the initial co-
variance matrix values a�ects the convergence time of the KF.
With that, for an initial covariance matrix with larger values, the
estimates of the �lter are expected to converge rapidly. However,
if its initial covariance values are too large, it is possible to in-
duce the �lter to divergence. Thus, it is necessary to evaluate
which are the best initial covariance matrix values for the desired
application.

7This can be easily accomplished by estimating the satellite trajectory around the TLE
(two-line element) epoch.
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5.1. Satellite orbits and LOS e�ects

The satellite orbits are derived from scintpy, a Python package developed
by the authors and made freely available and open source in [43]. This pack-
age searches for currently active CubeSat IDs on https://celestrak.org.
Based on the collected NORAD IDs of the active CubeSats, a set of TLEs
(two-line elements [17]) are downloaded from https://www.space-track.

org. Each CubeSat contains a TLE (two-line element) whose epoch is the
closest to the desired UTC date time (in our case, it is set to 28th October
2024, 07:00:00 AM). Then, it is searched for all satellites that, for this date
time, are in line-of-sight with the ground station location, which is set to São
José dos Campos, São Paulo, Brazil, at the geographic coordinates 23.2198◦

S, 45.8916◦W. The same process is repeated in intervals of 30 minutes until a
total of 10 CubeSats are found for the same �xed location. Table 1 shows the
NORAD identi�cation, rise and set time, and satellite name for all CubeSats
used in the simulations. The skyplot and the LOS e�ects for each CubeSat
are shown in Figure 3.

Satellite Name NORAD ID Rise Time (UTC) Set time (UTC)
FUNCUBE 1 39444 06:57:12 07:00:49
TIGRISAT 40043 06:54:21 07:04:45
SITRO-AIS-52 59063 06:59:17 07:04:00
POPACS 2 39269 07:29:02 07:35:36
POLYITAN 1 40042 07:23:06 07:30:25
M2 PATHFINDER 45727 07:27:14 07:32:21
CUTE-1 27844 07:59:56 08:11:29
AEROCUBE 8D 41852 07:59:56 08:08:07
AEROCUBE 8C 41853 08:21:51 08:31:17
DUCHIFAT-3 41853 08:21:44 08:31:29

Table 1: The satellite name, NORAD identi�cation, and its respective rise and set time.
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(a) The skyplot of the CubeSats used in the simulations. In this
�gure, the radius indicates the elevation angle, where 90◦ is the
zenith. The gray area is the elevation angle below 5◦, which is
considered the out of the line of sight. The circles and crosses
indicate the starting and ending points, respectively.
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(b) The LOS phase for each CubeSat.
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(c) The Doppler shift for each CubeSat.
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(d) The Doppler drift for each CubeSat.

Figure 3: The skyplot and the LOS phase, Doppler shift, and Doppler drift for each
CubeSat. The starting instant of all LOS e�ects is set to 0 for the sake of readability.

5.2. Bit error rate (BER)

Figure 4 shows the obtained system BER performance, where the value
for each 𝐸𝑏/𝑁0 is an average of 100 Monte Carlo simulations in total8. Each
Monte Carlo run is simulated with randomized seed for channel noise and
bit stream. For the sake of comparison, the plot also shows the theoreti-
cal probability error for the noncoherent AFSK demodulator, which can be
found in [15], the performance of the proposed model in a static scenario (i.e.,
without LOS dynamics), and its theoretical probability error upper bound

8This is the result of 10 independent Monte Carlo runs per CubeSat. By considering
the observation window time (set minus rise time) of each satellite, a total of 12 hours, 46
minutes, and 30 seconds was simulated.
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as derived in [18]. On the one hand, when comparing with the noncoherent
model, it is possible to argue that the proposed model signi�cantly outper-
form the standard noncoherent AFSK demodulator in approximately 5 dB.
On the other hand, when comparing with the static scenario and its upper
bound, it is possible to observe that the proposed model has no BER degra-
dation, except for very high values of 𝐸𝑏/𝑁0, where the noise is practically
absent and LOS-induced errors dominate. In other scenarios, however, the
proposed model obtain a BER lower than the theoretical upper bound. For
the real and static scenario, we obtained no bit errors for 𝐸𝑏/𝑁0 > 11 dB
and 𝐸𝑏/𝑁0 > 10 dB, respectively.
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Figure 4: BER for the proposed model in real and static scenario, theoretical probability
error upper bound for coherent AFSK, and the theoretical probability error for the non-
coherent AFSK demodulator.

5.3. Kalman �lter performance

Figure 5 shows the obtained MRMSE statistic for the Doppler shift

𝑓𝐷 [𝑘 | 𝑘 − 1] and drift ¤̂𝑓𝐷 [𝑘 | 𝑘 − 1] estimates provided by the KF algo-
rithm, for one Monte Carlo simulation, for each CubeSat, and for 𝐸𝑏/𝑁0 = 8
dB. Comparing this plot with Figure 3c and d, it is possible to observe that

the MRMSE of 𝑓𝐷 [𝑘 | 𝑘 − 1] and ¤̂𝑓𝐷 [𝑘 | 𝑘 − 1] increases according to the
rate change of the Doppler frequency shift and drift, respectively. Although
the estimates are slightly more imprecise for the intervals of high rate of
change, it does not signi�cantly impact the BER, as can be inferred from
Figure 4.
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(a) MRMSE of the Doppler shift estimate.
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(b) MRMSE of the Doppler drift estimate.

Figure 5: MRMSE for all CubeSats. The notation MRMSE [·] denotes the moving window
root mean squared error operator. Once again, the starting time of all MRMSE curves is
set to 0 for the sake of readability.

In sequence, Figure 6 shows the convergence of the trace of the KF error
covariance matrix estimates P [𝑘 | 𝑘 − 1] in the initialization of the algo-
rithm, for one Monte Carlo simulation, for each CubeSat, and for 𝐸𝑏/𝑁0 = 8
dB. This plot shows that the trace of the estimated error covariance matrix
successfully have the same convergence behavior for all CubeSats, showing
that the state estimates have converged and are reliable.
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Figure 6: Error covariance matrix trace, for 1 Monte Carlo run and each studied LOS
dynamics scenario. In this �gure, tr [·] denotes the trace operator. The starting time of
all trace curves is set to 0 for the sake of readability.

6. Conclusion

In this work, the design of a new all-digital and coherent AFSK demodu-
lator suitable for TT&C modules for CubeSats was presented. The proposed
DD AFSK demodulator architecture, which is based on Viterbi algorithm for
bit detection and a KF for synchronization was derived and detailed. The KF
and Viterbi algorithm form a closed-loop and DD system which provides co-
herent bit detection and joint phase and timing synchronization for CubeSat
LOS dynamics.

The proposed demodulator is subject to additive white Gaussian noise
channel with real CubeSat orbits in LEO, where the ground station is set
to São José dos Campos, Brazil. The performance results obtained through
computational simulations demonstrate that the proposed model can with-
stand such scenarios with a gain of 5 dB in terms of BER compared to the
conventional noncoherent AFSK demodulator. Moreover, when compared to
the static scenario (no LOS dynamics), the proposed demodulator has no
BER degradation, except for very high values of 𝐸𝑏/𝑁0, where the LOS-
induced bit errors dominate. Finally, the quality of the KF estimates was
evaluated through a MRMSE statistic and the trace of the estimated error
covariance matrix.

The proposed joint synchronization and bit detection algorithm provides
excellent performance under realistic CubeSat scenarios, signi�cantly out-
performing the standard noncoherent AFSK demodulator, while introducing
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only a moderate complexity increase in the satellite receiver.
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